Previous |  Up |  Next

Article

Title: The maximum genus, matchings and the cycle space of a graph (English)
Author: Fu, Hung-Lin
Author: Škoviera, Martin
Author: Tsai, Ming-Chun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 2
Year: 1998
Pages: 329-339
Summary lang: English
.
Category: math
.
Summary: In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský . (English)
Keyword: Maximum genus
Keyword: matching
Keyword: cycle space
MSC: 05C10
MSC: 05C38
MSC: 05C70
idZBL: Zbl 0949.05015
idMR: MR1624256
.
Date available: 2009-09-24T10:13:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127420
.
Reference: [1] C. Berge: Sur le couplage maximum d’un graphe.C. R. Acad. Sci. Paris (A) 247 (1958), 258–259. Zbl 0086.16301, MR 0100850
Reference: [2] C. P. Bonnington: The relative maximum genus of a graph.J. Combin. Theory Ser. B 60 (1994), 195–206. Zbl 0794.05016, MR 1271269, 10.1006/jctb.1994.1013
Reference: [3] G. Chartrand, A. D. Polimeni and M. J. Stewart: The existence of $1$-factors in line graphs, squares, and total graphs.Indag. Math. 35 (1973), 228–232. MR 0321809, 10.1016/1385-7258(73)90007-3
Reference: [4] J. Chen and J. Gross: Kuratowski-type theorems for average genus.J. Combin. Theory Ser. B 57 (1993), 100–121. MR 1198400, 10.1006/jctb.1993.1009
Reference: [5] A. D. Glukhov: The maximum genus of planar graphs.Ukrain. Mat. Zh. 34 (1982), 97–99. (Russian) MR 0647937
Reference: [6] J. L. Gross and R. G. Rieper: Local extrema in genus-stratified graphs.J. Graph Theory 15 (1991), 159–171. MR 1106529, 10.1002/jgt.3190150205
Reference: [7] P. Hall: On representation of subsets.J. London Math. Soc. 10 (1935), 26–30. 10.1112/jlms/s1-10.37.26
Reference: [8] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401–406. Zbl 0379.05025, MR 0492309
Reference: [9] N. P. Khomenko and A. D. Glukhov: Single-component $2$-cell embeddings and the maximum genus of a graph.Some Topological and Combinatorial Properties of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
Reference: [10] N. P. Khomenko, N. A. Ostroverkhy and V. A.Kuzmenko: The maximum genus of a graph.$\varphi $-Transformations of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1973, pp. 180–207. (Ukrainian, English summary)
Reference: [11] N. P. Khomenko and E. V. Yavorsky: $\varphi $-Transformations of the representation graph.Preprint 70.7, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1970. (Russian) MR 0531858
Reference: [12] D. König: Graphok és matrixok.Math. Fiz. Lapok 38 (1931), 116–119. (Hungarian)
Reference: [13] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (106) (1981), 604–613. MR 0631605
Reference: [14] L. Nebeský: On $2$-cell embeddings of graphs with minimum number of regions.Czechoslovak Math. J. 35 (110) (1985), 625–631. MR 0809045
Reference: [15] L. Nebeský: Characterizing the maximum genus of a connected graph.Czechoslovak Math. J. 43 (118) (1993), 177–185. MR 1205240
Reference: [16] E. A. Nordhaus, B. M. Stewart and A. T. White: On the maximum genus of a graph.J. Combin. Theory Ser. B 11 (1971), 258–267. MR 0286713, 10.1016/0095-8956(71)90036-0
Reference: [17] E. A. Nordhaus, R. D. Ringeisen, B. M. Stewart, and A. T. White: A Kuratowski-type theorem for the maximum genus of a graph.J. Combin. Theory Ser. B 12 (1972), 260–267. MR 0299523, 10.1016/0095-8956(72)90040-8
Reference: [18] J. Širáň and M. Škoviera: Characterization of the maximum genus of a signed graph.J. Combin. Theory Ser. B 52 (1991), 124–146. MR 1109428, 10.1016/0095-8956(91)90099-6
Reference: [19] D. P. Sumner: Graphs with $1$-factors.Proc. Amer. Math. Soc. 42 (1974), 8–12. Zbl 0293.05157, MR 0323648
Reference: [20] W. T. Tutte: The factorization of linear graphs.J. London Math. Soc. 22 (1947), 107–111. Zbl 0029.23301, MR 0023048
Reference: [21] N. H. Xuong: How to determine the maximum genus of a graph.J. Combin. Theory Ser. B (1979), 217–225. Zbl 0403.05035, MR 0532589
Reference: [22] T. Zaslavsky: Orientation embedding of signed graphs.J. Graph Theory 16 (1992), 399–422. Zbl 0778.05033, MR 1185006, 10.1002/jgt.3190160503
.

Files

Files Size Format View
CzechMathJ_48-1998-2_10.pdf 363.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo