Previous |  Up |  Next

Article

Title: Second order differentiability and Lipschitz smooth points of convex functionals (English)
Author: Matoušková, Eva
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 617-640
.
Category: math
.
MSC: 26A24
MSC: 46G05
MSC: 46N10
MSC: 49J52
MSC: 58C20
idZBL: Zbl 0956.58002
idMR: MR1658221
.
Date available: 2009-09-24T10:16:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127442
.
Reference: [A] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces.Studia Math. 57 (1976), 147–190. Zbl 0342.46034, MR 0425608, 10.4064/sm-57-2-147-190
Reference: [BL] Y. Benyamini, J. Lindenstrauss: Geometric Non-linear Functional Analysis.to appear.
Reference: [BN] J.M. Borwein, D. Noll: Second order differentiability of convex functions in Banach spaces.Trans. Amer. Math. Soc. 342 (1994), 43–82. MR 1145959, 10.1090/S0002-9947-1994-1145959-4
Reference: [BF] J.M. Borwein, S. Fitzpatrick: Existence of nearest points in Banach spaces.Canad. J. Math. 41 (1989), 702–720. MR 1012624, 10.4153/CJM-1989-032-7
Reference: [C] J.P.R. Christensen: Topology and Borel Structure.North-Holland, Amsterdam, 1974. Zbl 0273.28001, MR 0348724
Reference: [D] R. Dougherty: Examples of non-shy sets.Fundam. Math. 144 (1994), 73–88. Zbl 0842.43006, MR 1271479, 10.4064/fm-144-1-73-88
Reference: [DS] N. Dunford, J.T. Schwarz: Linear Operators I.Interscience Publishers, New York, 1967.
Reference: [F] M. Fabian: Lipschitz smooth points of convex functions and isomorphic characterisation of Hilbert spaces.Proc. London Math. Soc. 51 (1985), 113–126. MR 0788852
Reference: [K] K. Kuratowski: Topology I.Academic Press, London, 1968.
Reference: [L] S.J. Leese: Measurable selections and the uniformization of Souslin sets.Amer. J. Math. 100 (1978), 19–41. Zbl 0384.28005, MR 0507445, 10.2307/2373874
Reference: [Lt] K. Leichtweiß: Konvexe Mengen.Springer-Verlag, Berlin, 1980. MR 0586235
Reference: [M] P. McMullen: On the inner parallel body of a convex body.Israel J. Math. 19 (1974), 217–219. MR 0367810, 10.1007/BF02757715
Reference: [MM] J. Matoušek, E. Matoušková: A highly non-smooth norm on Hilbert space.(to appear). MR 1715018
Reference: [MS] E. Matoušková, C. Stegall: A characterization of reflexive Banach spaces.Proc. Amer. Math. Soc (to appear). MR 1301517
Reference: [P] R.R. Phelps: Convex Functions, Monotone Operators and Differentiabilitypubl Lecture Notes in Math. 1364, Springer-Verlag, Berlin.1993. MR 1238715
Reference: [R1] R.T. Rockafellar: Convex integral functionals and duality.Contributions to nonlinear functional analysis, E.H. Zarantello (ed.), New York, London, 1971, pp. 215–236. Zbl 0295.49006, MR 0390870
Reference: [R2] R.T. Rockafellar: Integral functionals, normal integrands and measurable selections.Nonlinear operators and the calculus of variations, Lecture Notes in Math. 543, A. Dold and B. Eckmann (eds.), Bruxeles, 1975, pp. 157–207. MR 0512209
Reference: [Rog] C.A. Rogers: Hausdorff Measures.Cambridge Univ. Press, Cambridge, 1970. Zbl 0204.37601, MR 0281862
Reference: [S] S. Solecki: On Haar null sets.Fundam. Math. 149 (1996), 205–210. Zbl 0887.28006, MR 1383206
Reference: [VZ] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. CCLXXXIX, (1989), 48. MR 1016045
.

Files

Files Size Format View
CzechMathJ_48-1998-4_2.pdf 471.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo