Previous |  Up |  Next

Article

Keywords:
Third order nonlinear differential equations; nonoscillatory solutions; asymptotic properties of solutions
Summary:
In this paper we consider the equation \[y^{\prime \prime \prime } + q(t){y^{\prime }}^{\alpha } + p(t) h(y) =0,\] where $p,q$ are real valued continuous functions on $[0,\infty )$ such that $q(t) \ge 0$, $p(t) \ge 0$ and $h(y)$ is continuous in $(-\infty ,\infty )$ such that $h(y)y>0$ for $y \ne 0$. We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.
References:
[1] Barrett, J.H.: Oscillation theory of ordinary linear differential equations. Advances in Math. 3 (1969), 415–509. MR 0257462 | Zbl 0213.10801
[2] Bobrowski, D.: Asymptotic behaviour of functionally bounded solutions of the third order nonlinear differential equation. Fasc. Math. (Poznañ) 10 (1978), 67–76. MR 0492524 | Zbl 0432.34035
[3] Cecchi, M. and Marini, M.: On the oscillatory behaviour of a third order nonlinear differential equation. Nonlinear Anal. 15 (1990), 141–153. DOI 10.1016/0362-546X(90)90118-Z | MR 1065248
[4] Erbe, L. H.: Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equation. Ann. Math. Pura Appl. 110 (1976), 373–393. DOI 10.1007/BF02418014 | MR 0427738
[5] Erbe, L. H. and Rao, V. S. M.: Nonoscillation results for third order nonlinear differential equations. J. Math. Analysis Applic. 125 (1987), 471–482. DOI 10.1016/0022-247X(87)90102-8 | MR 0896177
[6] Greguš, M.: Third Order Linear Differential Equations. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1987. MR 0882545
[7] Greguš, M.: On the asymptotic properties of solutions of nonlinear third order differential equation. Archivum Mathematicum (Brno) 26 (1990), 101–106. MR 1188268
[8] Greguš, M.: On the oscillatory behaviour of certain third order nonlinear differential equation. Archivum Mathematicum (Brno) 28 (1992), 221–228. MR 1222290
[9] Greguš, M. and Greguš Jr. M.: On the oscillatory properties of solutions of a certain nonlinear third order differential equation. J. Math. Analysis Applic. 181 (1994), 575–585. DOI 10.1006/jmaa.1994.1045 | MR 1264533
[10] Greguš, M. and Greguš Jr., M.: Asymptotic properties of solution of a certain nonautonomous nonlinear differential equations of the third order. Bollettino U.M.I. (7) 7-A (1993), 341–350.
[11] Heidel, J. W.: Qualitative behaviour of solution of a third order nonlinear differential equation. Pacific J. Math. 27 (1968), 507–526. DOI 10.2140/pjm.1968.27.507 | MR 0240389
[12] Heidel J. W.: The existence of oscillatory solution for a nonlinear odd order nonlinear differential equation. Czechoslov. Math. J. 20 (1970), 93–97. MR 0257468
[13] Ladde, G. S., Lakshmikantham, V. and Zhank, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marchel Dekker, Inc., New York, 1987. MR 1017244
[14] Parhi, N. and Parhi, S.: Nonoscillation and asymptotic behaviour forced nonlinear third order differential equations. Bull. Inst. Math. Acad. Sinica 13 (1985), 367–384. MR 0866573
[15] Parhi, N. and Parhi, S.: On the behaviour of solution of the differential equations $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t)y^\alpha = f(t)$. Annales Polon. Math. 47 (1986), 137–148. MR 0884931
[16] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. New York and London, Acad. Press, 1968. MR 0463570 | Zbl 0191.09904
[17] Wintner, A.: On the nonexistence of conjugate points. Amer. J. Math. 73 (1951), 368–380. DOI 10.2307/2372182 | MR 0042005 | Zbl 0043.08703
Partner of
EuDML logo