[1] H. Cartan: 
Idéaux de fonctions analytiques de $n$ complexes variables. Bull. Soc. Math. France. 78 (1950), 28–64. 
MR 0036848[2] H. Cartan: Séminaire E.N.S. École Normare Supérieur, Paris, 1951/1952.
[3] G. Coeuré: L’équation $\overline{\partial }u=F$ en dimension infinite. université Lille Publ. Int. 131, 1968, pp. 6–9.
[4] J. Colombeau and B. Perri: 
The $\overline{\partial }$-equation in D.F.N. spaces. J. Math. Anal. Appl. 78-2 (1980), 466–87. 
MR 0601549[5] J. Colombeau and B. Perri: 
L’équation $\overline{\partial }$ dans les ouverts pseudo-convexes des espaces D.F.N. Bull. Soc. Math. France. 110 (1982), 15–26. 
DOI 10.24033/bsmf.1951 | 
MR 0662127[7] S. Dineen: 
Cousin’s first problem on certain locally convex topological spaces. Acad. Brasil. Cienc. 48-1 (1976), 229–236. 
MR 0438376[9] S. Hitotumatu: Theorem of analytic functions of several complex variables. (1960), Baihuukan. (Japanese)
[10] J. Kajiwara: 
On an application of L. Ehrenpreis’ method to ordinary differential equations, Kōdai Math. Sem. Rep. 15-2 (1963), 94–105. 
MR 0151658[11] J. Kajiwara and L. Li: 
Localization of Global Existence of Holomorphic Solutions of Differential Equations with Complex Parameters. Proc. 4th Int. Coll. on Differential Equations, VSP (Utrecht), 1993, pp. 147–156. 
MR 1458393[12] J. Kajiwara and Y. Mori: 
On the existence of global holomorphic solutions of differential equations with complex parameters. Czechoslovak Math. J. 24(199) (1974), 444–454. 
MR 0358871[13] J. Kajiwara and K. H. Shon: Continuation and vanishing theorem for cohomology of infinite dimensional space. Pusan Kyôngnam Math. J. 1 (1993), 65–73.
[14] Ph. Noverraz: Pseudo-Convéxité, Convéxité et Domaines d’Holomorphie en Dimension Infinie. North-Holland. Math. Studies 3 (1973).
[15] K. Oka: 
Sur les fonctions analytiques plusieurs variables: VII Sur quelques notions arithmétiques. Bull. Soc. math. France 78 (1950), 1–27. 
MR 0035831[16] K. Oka: 
Sur les fonctions analytiques plusieurs variables: IX Domaines finis sans point critique intérieur. Jap. J. Math. 23 (1953), 1–27. 
MR 0071089[18] J. P. S$\grave{e}$rre: Quelques problémes globaux aux variétés de Stein. Coll. Plus. Var., Bruxelle (1953), 57–68.
[19] H. Suzuki: 
On the global existence of holomorphic solutions of $\partial u/\partial x_1 = f$. Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), 253–258. 
MR 0310457[20] I. Wakabayashi: 
Non existence of holomorphic solutions of $\partial u/\partial z_1 = f$. Proc. Jap. Acad. 44 (1968), 820–822. 
MR 0240330