Previous |  Up |  Next

Article

Title: On the mixed problem for hyperbolic partial differential-functional equations of the first order (English)
Author: Człapiński, Tomasz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 791-809
Summary lang: English
.
Category: math
.
Summary: We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order \[ D_xz(x,y) = f(x,y,z_{(x,y)}, D_yz(x,y)), \] where $z_{(x,y)} \: [-\tau ,0] \times [0,h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x,y)}(t,s) = z(x+t, y+s)$, $(t,s) \in [-\tau ,0] \times [0,h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem. (English)
Keyword: partial differential-functional equations
Keyword: mixed problem
Keyword: generalized solutions
Keyword: local existence
Keyword: bicharacteristics
Keyword: successive approximations
MSC: 35A30
MSC: 35D05
MSC: 35L60
MSC: 35R10
idZBL: Zbl 1010.35021
idMR: MR1746704
.
Date available: 2009-09-24T10:27:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127528
.
Reference: [1] V. E. Abolina, A. D. Myshkis: Mixed problem for a semilinear hyperbolic system on a plane.Mat. Sb. 50 (1960), 423–442 (Russian).
Reference: [2] P. Bassanini: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables.Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343–372. MR 0430543
Reference: [3] P. Bassanini: On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form.Boll. Un. Mat. Ital. (5) 14-A (1977), 325–332. Zbl 0355.35059, MR 0492913
Reference: [4] P. Bassanini: Iterative methods for quasilinear hyperbolic systems.Boll. Un. Mat. Ital. (6) 1-B (1982), 225–250. Zbl 0488.35056, MR 0654933
Reference: [5] P. Bassanini, J. Turo: Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations.Ann. Mat. Pura Appl. 156 (1990), 211–230. MR 1080217, 10.1007/BF01766980
Reference: [6] P. Brandi, R. Ceppitelli: Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint..
Reference: [7] P. Brandi, Z. Kamont, A. Salvadori: Existence of weak solutions for partial differential-functional equations.(to appear).
Reference: [8] L. Cesari: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form.Ann. Sc. Norm. Sup. Pisa (4) 1 (1974), 311–358. MR 0380132
Reference: [9] L. Cesari: A boundary value problem for quasilinear hyperbolic systems.Riv. Mat. Univ. Parma 3 (1974), 107–131. MR 0435616
Reference: [10] S. Cinquini: Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Rend. Sem. Mat. Fis. Univ. Milano 52 (1982).
Reference: [11] M. Cinquini-Cibrario: Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Rend. Ist. Lombardo 104 (1970), 759–829. Zbl 0215.16202, MR 0296485
Reference: [12] M. Cinquini-Cibrario: Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Ann. Mat. Pura. Appl. 140 (1985), 223–253. MR 1553456, 10.1007/BF01776851
Reference: [13] T. Człapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order.Zeit. Anal. Anwend. 10 (1991), 169–182. 10.4171/ZAA/439
Reference: [14] T. Dzłapiński: On the mixed problem for quasilinear partial differential-functional equations of the first order.Zeit. Anal. Anwend. 16 (1997), 463–478. 10.4171/ZAA/773
Reference: [15] T. Człapiński: Existence of generalized solutions for hyperbolic partial differential-functional equations with delay at derivatives.(to appear).
Reference: [16] Z. Kamont, K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems.Math. Balk. 6 (1992), 313–324. MR 1203465
Reference: [17] A. D. Myshkis; A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables.Diff. Urav. 17 (1981), 488–500. (Russian) Zbl 1152.35071, MR 0610510
Reference: [18] A. D. Myshkis, A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables.Proc. of Sec. Conf. Diff. Equat. and Appl., Rousse (1982), 524–529. (Russian)
Reference: [19] J. Turo: On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order.Czechoslovak Math. J. 36 (1986), 185–197. Zbl 0612.35082, MR 0831307
Reference: [20] J. Turo: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables.Ann. Polon. Math. 49 (1989), 259–278. Zbl 0685.35065, MR 0997519, 10.4064/ap-49-3-259-278
.

Files

Files Size Format View
CzechMathJ_49-1999-4_10.pdf 408.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo