Title:
|
On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations (English) |
Author:
|
Ibrahim, Sobhy El-sayed |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
877-890 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of $n$th order with complex coefficients $M[y] - \lambda wy = wf (t, y^{[0]}, \ldots ,y^{[n-1]})$, $t\in [a,b)$ provided that all $r$th quasi-derivatives of solutions of $M[y] - \lambda w y = 0$ and all solutions of its normal adjoint $M^+[z] - \bar{\lambda } w z = 0$ are in $L^2_w (a,b)$ and under suitable conditions on the function $f$. (English) |
Keyword:
|
quasi-differential operators |
Keyword:
|
regular |
Keyword:
|
singular |
Keyword:
|
bounded and square integrable solutions |
MSC:
|
34A05 |
MSC:
|
34A25 |
MSC:
|
34B15 |
MSC:
|
34B25 |
MSC:
|
34C11 |
MSC:
|
34E10 |
MSC:
|
34E15 |
MSC:
|
34G10 |
MSC:
|
34M45 |
MSC:
|
47A55 |
MSC:
|
47E05 |
idZBL:
|
Zbl 1015.34002 |
idMR:
|
MR1746713 |
. |
Date available:
|
2009-09-24T10:28:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127537 |
. |
Reference:
|
[1] J.S. Bradley: Comparison theorems for the square integrability of solutions of $(r(t)y^{\prime })^{\prime } + q(t) y = f(t,y)$.Glasgow Math., Soc. 13 (1972), 75–79. Zbl 0246.34029, MR 0313579, 10.1017/S0017089500001415 |
Reference:
|
[2] D.E. Edmunds and W.D. Evans: Spectral Theory and Differential Operators (Oxford University) Press.1987. MR 0929030 |
Reference:
|
[3] W.N. Everitt and D. Race: Some remarks on linear ordinary quasi-differential expressions.Proc. London Math. Soc. (3) 54 (1987), 300–320. MR 0872809 |
Reference:
|
[4] R.C. Gilbert: Simplicity of linear ordinary differential operators.Journal of Differential Equations 11 (1972), 672–681. Zbl 0222.34058, MR 0301564, 10.1016/0022-0396(72)90074-5 |
Reference:
|
[5] S. Goldberg: Unbounded Linear Operators.McGraw. Hill, New York, 1966. Zbl 0148.12501, MR 0200692 |
Reference:
|
[6] H.E. Gollwitzer: A note on functional inequality.Proc. Amer. Math. Soc. 23 (1969), 642–647. MR 0247016, 10.1090/S0002-9939-1969-0247016-9 |
Reference:
|
[7] M.R. Mohana Rao: Ordinary Differential Equations.(Theory and Applications); First Published in the United Kingdom in 1989 by Edward Arnold (Publishers) Limited, London. |
Reference:
|
[8] M.N. Naimark: Linear Differential Operators.(G.I.T.T.L., Moscow, 1954), Ungar, New York, Vol. I (1967), Vol. II (1968). Zbl 0227.34020 |
Reference:
|
[9] Sobhy El-sayed Ibrahim: Problems associated with differential operators.Ph.D. thesis (1989), Faculty of Sciences, Department of Mathematics, Benha University, Egypt. |
Reference:
|
[10] Sobhy El-sayed Ibrahim: Boundedness for solutions of general ordinary quasi-differential equations.Journal of the Egyptian Mathematical Society 2 (1994), 33–44. Zbl 0818.34019, MR 1319065 |
Reference:
|
[11] Sobhy El-sayed Ibrahim: The spectra of well-posed operators.Proc. Royal Soc. of Edinburgh 124A (1995), 1331–1348. MR 1363006 |
Reference:
|
[12] D. Willett: Nonlinear vector integral equations as contraction mappings.Arch. Rational Mech. Anal. 15 (1964), 79–86. Zbl 0161.31902, MR 0159200, 10.1007/BF00257405 |
Reference:
|
[13] D. Willett and J.S.W. Wong: On the discrete analogues of some generalizations of Gronwall’s inequality.Monatsh. Math. 69 (1965), 362–367 MR 32 $\ne $ 2644. MR 0185175, 10.1007/BF01297622 |
Reference:
|
[14] J.S.W. Wong: Square integrable solutions of perturbed linear differential equations.Proc. Royal Society of Edinburgh 73A, 16 (1974/75), 251–254. MR 0470314 |
Reference:
|
[15] A. Zettl: Square integrable solutions of $Ly = f(t,y)$.Proceedings of the American Mathematical Society 26 (1970), 635–639. Zbl 0214.09105, MR 0267213 |
Reference:
|
[16] A. Zettl: Perturbation of the limit circle case.Quart. J. Math., Oxford (3) 26 (1975), 355–360. Zbl 0325.34022, MR 0470315, 10.1093/qmath/26.1.355 |
Reference:
|
[17] A. Zettl: Formally self-adjoint quasi-differential operators.Rocky Mountain Journal of Mathematics (3) 5 (1975), 453–474. MR 0379976, 10.1216/RMJ-1975-5-3-453 |
. |