Previous |  Up |  Next

Article

Title: Orthomodular lattices with state-separated noncompatible pairs (English)
Author: Mayet, R.
Author: Pták, P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 359-366
Summary lang: English
.
Category: math
.
Summary: In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate by examples that these classes may (and need not) be varieties. The results supplement the research carried on in , , , , , , , and . (English)
Keyword: orthomodular lattice
Keyword: state
Keyword: noncompatible pairs
Keyword: (quasi)variety
MSC: 06C15
MSC: 08C15
MSC: 81P10
idZBL: Zbl 1047.06005
idMR: MR1761393
.
Date available: 2009-09-24T10:33:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127575
.
Reference: [1] A. B. D’Andrea, S. Pulmannová: Quasivarieties of orthomodular lattices and Bell inequalities.Rep. Math. Phys. 37 (1996), 261–266. MR 1400390, 10.1016/0034-4877(96)89766-7
Reference: [2] L. Beran: Orthomodular Lattices (Algebraic Approach).Academia (Prague), 1984. MR 0785005
Reference: [3] G. Bruns, G. Kalmbach: Varieties of orthomodular lattices I, II.Canad. J. Math. 23 (1971), 802–810. MR 0289374, 10.4153/CJM-1971-089-1
Reference: [4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states.Demonstratio Math. XIV, 3 (1981), 725–732. Zbl 0483.06007, MR 0663122
Reference: [5] R. Godowski: States orthomodular lattices.Demonstratio Math. XV, 3 (1982), 817–822. MR 0693543, 10.1515/dema-1982-0320
Reference: [6] R. Godowski, R. J. Greechie: Some equations related to states on orthomodular lattices.Demonstratio Math. XVII, 1 (1984), 241–250. MR 0760356
Reference: [7] J. Grätzer: Universal Algebra (2nd ed.).Springer-Verlag, New York/Heidelberg/Berlin, 1979. Zbl 0412.08001, MR 0538623
Reference: [8] R. J. Greechie: Orthomodular lattices admitting no states.J. Combin. Theory 10 (1971), 119–132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [9] S. Gudder: Stochastic Methods in Quantum Mechanics.Elsevier/North-Holland, Amsterdam, 1979. Zbl 0439.46047, MR 0543489
Reference: [10] G. Kalmbach: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [11] M. Matoušek: Orthomodular lattices with fully nontrivial commutators.Comment. Math. Univ. Carolin. 33, 1 (1992), 25–32. MR 1173742
Reference: [12] R. Mayet: Varieties of orthomodular lattices related to states.Algebra Universalis 20 (1985), 368–386. Zbl 0581.06006, MR 0811695, 10.1007/BF01195144
Reference: [13] R. Mayet: Equational bases for some varieties of orthomodular lattices related to states.Algebra Universalis 23 (1986), 167–195. Zbl 0618.06003, MR 0896969, 10.1007/BF01237719
Reference: [14] P. Pták: Exotic logics.Colloq. Math. 54 (1987), 1–7. MR 0928651, 10.4064/cm-54-1-1-7
Reference: [15] P. Pták, S. Pulmanová: Orthomodular Structures as Quantum Logics.Kluwer, 1991.
Reference: [16] P. Pták, V. Rogalewicz: Measures on orthomodular partially ordered sets.J. Pure Appl. Algebra 28 (1983), 75–80. MR 0692854, 10.1016/0022-4049(83)90074-9
Reference: [17] F. Schultz: A characterization of state space of orthomodular lattices.J. Combin. Theory 17 (1974), 317–328. MR 0364042, 10.1016/0097-3165(74)90096-X
Reference: [18] V. Varadarajan: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970.
.

Files

Files Size Format View
CzechMathJ_50-2000-2_11.pdf 349.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo