Previous |  Up |  Next

Article

Title: Almost Butler groups (English)
Author: Bican, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 367-378
Summary lang: English
.
Category: math
.
Summary: Generalizing the notion of the almost free group we introduce almost Butler groups. An almost $B_2$-group $G$ of singular cardinality is a $B_2$-group. Since almost $B_2$-groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that $G$ is a $B_1$-group. Some other results characterizing $B_2$-groups within the classes of almost $B_1$-groups and almost $B_2$-groups are obtained. A theorem of stating that a group $G$ of weakly compact cardinality $\lambda $ having a $\lambda $-filtration consisting of pure $B_2$-subgroup is a $B_2$-group appears as a corollary. (English)
MSC: 20K20
MSC: 20K27
idZBL: Zbl 1051.20023
idMR: MR1761394
.
Date available: 2009-09-24T10:33:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127576
.
Reference: [AH] Albrecht, U., Hill, P.: Butler groups of infinite rank and axiom 3.Czechoslovak Math. J. 37 (1987), 293–309. MR 0882600
Reference: [B1] Bican, L.: On $B_2$-groups.Contemp. Math. 171 (1994), 13–19. MR 1293129
Reference: [B2] Bican, L.: Butler groups and Shelah’s singular compactness.Comment. Math. Univ. Carolin. 37 (1996), 11–178. Zbl 0857.20037, MR 1396169
Reference: [B3] Bican, L.: Families of preseparative subgroups.Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 149–162. Zbl 0866.20043, MR 1415629
Reference: [BB] El Bashir, R., Bican, L.: Remarks on $B_2$-groups.Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 133–142.
Reference: [BF] Bican, L., Fuchs, L.: Subgroups of Butler groups.Comm. Algebra 22 (1994), 1037–1047. MR 1261020, 10.1080/00927879408824891
Reference: [BR] Bican, L., Rangaswamy, K. M.: Smooth unions of Butler groups.Forum Math. 10 (1998), 233–247. MR 1611959, 10.1515/form.10.2.233
Reference: [BRV] Bican, L., Rangaswamy, K. M., Vinsonhaler Ch.: Butler groups as smooth ascending unions.(to appear). MR 1785487
Reference: [BS] Bican, L., Salce, L.: Infinite rank Butler groups,.Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., Springer-Verlag 1006 (1983), 171–189.
Reference: [DHR] Dugas, M., Hill, P., Rangaswamy, K. M.: Infinite rank Butler groups II.Trans. Amer. Math. Soc. 320 (1990), 643–664. MR 0963246
Reference: [DR] Dugas, Rangaswamy, K. M.: Infinite rank Butler groups.Trans. Amer. Math. Soc. 305 (1988), 129–142. MR 0920150, 10.1090/S0002-9947-1988-0920150-X
Reference: [F1] Fuchs, L.: Infinite Abelian Groups, vol. I and II.Academic Press, New York, 1973 and 1977. MR 0255673
Reference: [F2] Fuchs, L.: Infinite rank Butler groups.Preprint.
Reference: [F3] Fuchs, L.: Infinite rank Butler groups.J. Pure Appl. Algebra 98 (1995), 25–44. MR 1316995, 10.1016/0022-4049(94)00016-C
Reference: [FMa] Fuchs, L., Magidor, M.: Butler groups of arbitrary cardinality.Israel J. Math. 84 (1993), 239–263. MR 1244670, 10.1007/BF02761702
Reference: [FR1] Fuchs, L., Rangaswamy, K. M.: Butler groups that are unions of subgroups with countable typesets.Arch. Math. 61 (1993), 105–110. MR 1230938, 10.1007/BF01207457
Reference: [FR2] Fuchs, L., Rangaswamy, K. M.: Unions of chains of Butler groups.Contemp. Math. 171 (1994), 141–146. MR 1293138, 10.1090/conm/171/01769
Reference: [FV] Fuchs, L., Viljoen, G.: Note on the extensions of Butler groups.Bull. Austral. Math. Soc. 41 (1990), 117–122. MR 1043972, 10.1017/S0004972700017901
Reference: [H] Hodges, W.: In singular cardinality, locally free algebras are free.Algebra Universalis 12 (1981), 205–220. Zbl 0476.03039, MR 0608664, 10.1007/BF02483879
Reference: [R] Rangaswamy, K. M.: A property of $B_2$-groups.Comment. Math. Univ. Carolin. 35 (1994), 627–631. MR 1321233
.

Files

Files Size Format View
CzechMathJ_50-2000-2_12.pdf 375.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo