Title:
|
Almost Butler groups (English) |
Author:
|
Bican, Ladislav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
367-378 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Generalizing the notion of the almost free group we introduce almost Butler groups. An almost $B_2$-group $G$ of singular cardinality is a $B_2$-group. Since almost $B_2$-groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that $G$ is a $B_1$-group. Some other results characterizing $B_2$-groups within the classes of almost $B_1$-groups and almost $B_2$-groups are obtained. A theorem of stating that a group $G$ of weakly compact cardinality $\lambda $ having a $\lambda $-filtration consisting of pure $B_2$-subgroup is a $B_2$-group appears as a corollary. (English) |
MSC:
|
20K20 |
MSC:
|
20K27 |
idZBL:
|
Zbl 1051.20023 |
idMR:
|
MR1761394 |
. |
Date available:
|
2009-09-24T10:33:36Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127576 |
. |
Reference:
|
[AH] Albrecht, U., Hill, P.: Butler groups of infinite rank and axiom 3.Czechoslovak Math. J. 37 (1987), 293–309. MR 0882600 |
Reference:
|
[B1] Bican, L.: On $B_2$-groups.Contemp. Math. 171 (1994), 13–19. MR 1293129 |
Reference:
|
[B2] Bican, L.: Butler groups and Shelah’s singular compactness.Comment. Math. Univ. Carolin. 37 (1996), 11–178. Zbl 0857.20037, MR 1396169 |
Reference:
|
[B3] Bican, L.: Families of preseparative subgroups.Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 149–162. Zbl 0866.20043, MR 1415629 |
Reference:
|
[BB] El Bashir, R., Bican, L.: Remarks on $B_2$-groups.Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 133–142. |
Reference:
|
[BF] Bican, L., Fuchs, L.: Subgroups of Butler groups.Comm. Algebra 22 (1994), 1037–1047. MR 1261020, 10.1080/00927879408824891 |
Reference:
|
[BR] Bican, L., Rangaswamy, K. M.: Smooth unions of Butler groups.Forum Math. 10 (1998), 233–247. MR 1611959, 10.1515/form.10.2.233 |
Reference:
|
[BRV] Bican, L., Rangaswamy, K. M., Vinsonhaler Ch.: Butler groups as smooth ascending unions.(to appear). MR 1785487 |
Reference:
|
[BS] Bican, L., Salce, L.: Infinite rank Butler groups,.Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., Springer-Verlag 1006 (1983), 171–189. |
Reference:
|
[DHR] Dugas, M., Hill, P., Rangaswamy, K. M.: Infinite rank Butler groups II.Trans. Amer. Math. Soc. 320 (1990), 643–664. MR 0963246 |
Reference:
|
[DR] Dugas, Rangaswamy, K. M.: Infinite rank Butler groups.Trans. Amer. Math. Soc. 305 (1988), 129–142. MR 0920150, 10.1090/S0002-9947-1988-0920150-X |
Reference:
|
[F1] Fuchs, L.: Infinite Abelian Groups, vol. I and II.Academic Press, New York, 1973 and 1977. MR 0255673 |
Reference:
|
[F2] Fuchs, L.: Infinite rank Butler groups.Preprint. |
Reference:
|
[F3] Fuchs, L.: Infinite rank Butler groups.J. Pure Appl. Algebra 98 (1995), 25–44. MR 1316995, 10.1016/0022-4049(94)00016-C |
Reference:
|
[FMa] Fuchs, L., Magidor, M.: Butler groups of arbitrary cardinality.Israel J. Math. 84 (1993), 239–263. MR 1244670, 10.1007/BF02761702 |
Reference:
|
[FR1] Fuchs, L., Rangaswamy, K. M.: Butler groups that are unions of subgroups with countable typesets.Arch. Math. 61 (1993), 105–110. MR 1230938, 10.1007/BF01207457 |
Reference:
|
[FR2] Fuchs, L., Rangaswamy, K. M.: Unions of chains of Butler groups.Contemp. Math. 171 (1994), 141–146. MR 1293138, 10.1090/conm/171/01769 |
Reference:
|
[FV] Fuchs, L., Viljoen, G.: Note on the extensions of Butler groups.Bull. Austral. Math. Soc. 41 (1990), 117–122. MR 1043972, 10.1017/S0004972700017901 |
Reference:
|
[H] Hodges, W.: In singular cardinality, locally free algebras are free.Algebra Universalis 12 (1981), 205–220. Zbl 0476.03039, MR 0608664, 10.1007/BF02483879 |
Reference:
|
[R] Rangaswamy, K. M.: A property of $B_2$-groups.Comment. Math. Univ. Carolin. 35 (1994), 627–631. MR 1321233 |
. |