Title:
|
Strong topologies on vector-valued function spaces (English) |
Author:
|
Nowak, Marian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
401-414 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(X,\Vert \cdot \Vert _X)$ be a real Banach space and let $E$ be an ideal of $L^0$ over a $\sigma $-finite measure space $(Ø,\Sigma ,\mu )$. Let $(X)$ be the space of all strongly $\Sigma $-measurable functions $f\: Ø\rightarrow X$ such that the scalar function ${\widetilde{f}}$, defined by ${\widetilde{f}}(ø)=\Vert f(ø)\Vert _X$ for $ø\in Ø$, belongs to $E$. The paper deals with strong topologies on $E(X)$. In particular, the strong topology $\beta (E(X), E(X)^\sim _n)$ ($E(X)^\sim _n=$ the order continuous dual of $E(X)$) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies. (English) |
Keyword:
|
vector valued function spaces |
Keyword:
|
locally solid topologies |
Keyword:
|
strong topologies |
Keyword:
|
Mackey topologies |
Keyword:
|
absolute weak topologies |
MSC:
|
46A40 |
MSC:
|
46E30 |
MSC:
|
46E40 |
idZBL:
|
Zbl 1050.46513 |
idMR:
|
MR1761397 |
. |
Date available:
|
2009-09-24T10:34:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127579 |
. |
Reference:
|
[AB$_1$] C.D. Aliprantis and O. Burkinshaw: Locally Solid Riesz Spaces.Academic Press, New York, San Francisco, London, 1978. MR 0493242 |
Reference:
|
[AB$_2$] C.D. Aliprantis and O. Burkinshaw: Positive Operators.Academic Press, Inc., 1985. MR 0809372 |
Reference:
|
[B$_1$] A.V. Bukhvalov: Vector-valued function spaces and tensor products.Siberian Math. J. 13 (1972), no. 6, 1229–1238. (Russian) MR 0358342 |
Reference:
|
[B$_2$] A.V. Bukhvalov: On an analytic representation of operators with abstract norm.Soviet. Math. Dokl. 14 (1973), 197–201. Zbl 0283.47028 |
Reference:
|
[B$_3$] A.V. Bukhvalov: On an analytic representation of operators with abstract norm.Izv. Vyssh. Ucebn. Zaved. Mat. 11 (1975), 21–32. (Russian) MR 0470746 |
Reference:
|
[B$_4$] A.V. Bukhvalov: On an analytic representation of linear operators by vector-valued measurable functions.Izv. Vyssh. Ucebn. Zaved. Mat. 7 (1977), 21–31. (Russian) |
Reference:
|
[CHM] J. Cerda, H. Hudzik, M. Mastyło: Geometric properties of Köthe-Bochner spaces.Math. Proc. Cambridge Philos. Soc. 120 (1996), 521–533. MR 1388204, 10.1017/S0305004100075058 |
Reference:
|
[DU] J. Diestel, J.J. Uhl Jr.: Vector Measures.Amer. Math. Soc., Math. Surveys 15, Providence, 1977. MR 0453964 |
Reference:
|
[FN] K. Feledziak, M. Nowak: Locally solid topologies on vector-valued function spaces.Collect. Math. 48, 4–6 (1997), 487–511. MR 1602576 |
Reference:
|
[FPS] M. Florencio, P.J. Paúl annd C. Sáez: Duals of vector-valued Köthe function spaces.Math. Proc. Cambridge Philos. Soc. 112 (1992), 165–174. MR 1162941, 10.1017/S0305004100070845 |
Reference:
|
[F] D.H. Fremlin: Topological Riesz Spaces and Measure Theory.Camb. Univ. Press, 1974. Zbl 0273.46035, MR 0454575 |
Reference:
|
[G] D.A. Gregory: Some basic properties of vector sequence spaces.J. Reine Angew. Math. 237 (1969), 26–38. MR 0251497 |
Reference:
|
[KA] L.V. Kantorovitch, G.P. Akilov: Functional Analysis.3$^{rd}$ ed., Nauka, Moscow, 1984. (Russian) MR 0788496 |
Reference:
|
[K] G. Köthe: Topological Vector Spaces I.Springer-Verlag, Berlin, Heidelberg, New York, 1983. MR 0248498 |
Reference:
|
[M] A.L. Macdonald: Vector valued Köthe function spaces I.Illinois J. Math. 17 (1973), 533–545. Zbl 0271.46034, MR 0333662, 10.1215/ijm/1256051473 |
Reference:
|
[MR] L.C. Moore, J.C. Reber: Mackey topologies which are locally convex Riesz topologies.Duke Math. J. 39 (1972), 105–119. MR 0295045, 10.1215/S0012-7094-72-03915-4 |
Reference:
|
[N$_1$] M. Nowak: Duality theory of vector valued function spaces I.Comment. Math. 37 (1997), 195–215. Zbl 0908.46023, MR 1608189 |
Reference:
|
[N$_2$] M. Nowak: Duality theory of vector–valued function spaces III.Comment. Math. 38 (1998), 101–108. Zbl 0972.46025, MR 1672244 |
Reference:
|
[PC] N. Phuong-Các: Generalized Köthe function spaces I.Math. Proc. Cambridge Philos. Soc. 65 (1969), 601–611. MR 0248499, 10.1017/S030500410000339X |
Reference:
|
[Ro] A.P. Robertson, W.J. Robertson: Topological Vector Spaces.Cambridge, 1973. MR 0350361 |
Reference:
|
[R] R.C. Rosier: Dual spaces of certain vector sequence spaces.Pacific J. Math. 46 (1973), 487–501. Zbl 0263.46009, MR 0328544, 10.2140/pjm.1973.46.487 |
Reference:
|
[W] J.H. Webb: Sequential convergence in locally convex spaces.Math. Proc. Cambridge Philos. Soc. 64 (1968), 341–364. Zbl 0157.20202, MR 0222602, 10.1017/S0305004100042900 |
Reference:
|
[We] R. Welland: On Köthe spaces.Trans. Amer. Math. Soc. 112 (1964), 267–277. Zbl 0122.11501, MR 0172110, 10.2307/1994294 |
Reference:
|
[Wi] A. Wilansky: Modern Methods in Topological Vector Spaces.Mc Graw-Hill, Inc., 1978. Zbl 0395.46001, MR 0518316 |
Reference:
|
[V] B.Z. Vulikh: Introduction to the Theory of Partially Ordered Spaces.Wolter-Hoordhoff, Groningen, Netherlands, 1967. Zbl 0186.44601, MR 0224522 |
. |