Previous |  Up |  Next

Article

Title: Relative polars in ordered sets (English)
Author: Halaš, Radomír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 415-429
Summary lang: English
.
Category: math
.
Summary: In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found. (English)
Keyword: Ordered set
Keyword: distributive set
Keyword: ideal
Keyword: prime ideal
Keyword: $R$-polar
Keyword: annihilator
MSC: 06A06
MSC: 06A99
idZBL: Zbl 1047.06001
idMR: MR1761398
.
Date available: 2009-09-24T10:34:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127580
.
Reference: [1] Anderson, M., Feil, T.: Lattice-Ordered Groups (An Introduction).Dordrecht, Reidel, 1987. MR 0937703
Reference: [2] Chajda, I.: Complemented ordered sets.Arch. Math. (Brno) 28 (1992), 25–34. Zbl 0785.06002, MR 1201863
Reference: [3] Chajda, I., Halaš, R.: Indexed annihilators in ordered sets.Math. Slovaca 45 (1995), 501–508. MR 1390703
Reference: [4] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets.Order 5 (1989), 407–423. MR 1010389, 10.1007/BF00353659
Reference: [5] Duffus, D., Rival, I.: A structure theory for ordered sets.Discrete Math. 35 (1981), 53–110. MR 0620665, 10.1016/0012-365X(81)90201-6
Reference: [6] Erné, M.: Distributivgesetze und die Dedekindsche Schnittverwollständigung.Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. MR 0693169
Reference: [7] Grätzer, G.: Lattice Theory.Akademie Verlag, Berlin, 1978. MR 0504338
Reference: [8] Halaš, R.: Pseudocomplemented ordered sets.Arch. Math. (Brno) 29 (1993), 153–160. MR 1263116
Reference: [9] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math. (Brno) 30 (1994), 25–27. MR 1282110
Reference: [10] Halaš, R.: Decompositions of directed sets with zero.Math. Slovaca 45 (1995), 9–17. MR 1335835
Reference: [11] Halaš, R.: Ideals and annihilators in ordered sets.Czechoslovak Math. J. 45(120) (1995), 127–134. MR 1314535
Reference: [12] Halaš, R.: Some properties of Boolean ordered sets.Czechoslovak Math. J. 46(121) (1996), 93–98. MR 1371691
Reference: [13] Halaš, R.: A characterization of finite Stone PC-ordered sets.Math. Bohem. 121 (1996), 117–120. MR 1400602
Reference: [14] Halaš, R.: Annihilators and ideals in distributive and modular ordered sets.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. MR 1447252
Reference: [15] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. MR 1369627
Reference: [16] Jakubík, J.: $M$-polars in lattices.Čas. Pěst. Mat. 95 (1970), 252–255. MR 0274352
Reference: [17] Katriňák, T.: $M$-Polaren in halbgeordneten Mengen.Čas. Pěst. Mat. 95 (1970), 416–419. MR 0279004
Reference: [18] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. MR 1039879
Reference: [19] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets (preprint).. MR 1354802
Reference: [20] Rachůnek, J.: A characterization of $o$-distributive semilattices.Acta Sci. Math. (Szeged) 54 (1990), 241–246. MR 1096803
Reference: [21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices.Math. Slovaca 42 (1992), 3–13.
Reference: [22] Rachůnek, J.: The ordinal variety of distributive ordered sets of width two.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. MR 1166422
Reference: [23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.
Reference: [24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean.Czechoslovak Math. J. 91(106) (1981), 98–102.
.

Files

Files Size Format View
CzechMathJ_50-2000-2_16.pdf 374.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo