Previous |  Up |  Next

Article

Title: Periodic problems and problems with discontinuities for nonlinear parabolic equations (English)
Author: Cardinali, Tiziana
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 467-497
Summary lang: English
.
Category: math
.
Summary: In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_{\delta }$-set in $(CT,L^2(Z))$. (English)
Keyword: pseudomonotone operator
Keyword: $L$-pseudomonotonicity
Keyword: operator of type $(S)_{+}$
Keyword: operator of type $L$-$(S)_{+}$
Keyword: coercive operator
Keyword: surjective operator
Keyword: evolution triple
Keyword: compact embedding
Keyword: multifunction
Keyword: upper solution
Keyword: lower solution
Keyword: extremal solution
Keyword: $R_{\delta }$-set
MSC: 34G25
MSC: 35B10
MSC: 35D05
MSC: 35K20
MSC: 35K55
MSC: 47J05
idZBL: Zbl 1079.35519
idMR: MR1777470
.
Date available: 2009-09-24T10:34:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127586
.
Reference: [1] J. Appell, P. Zabrejko: Superposition Operators.Cambridge Univ. Press, Cambridge, U.K., 1990. MR 1066204
Reference: [2] R. Ash: Real Analysis and Probability.Academic Press, New York, 1972. MR 0435320
Reference: [3] E. Avgerinos, N. S. Papageorgiou: Solutions and periodic solutions for nonlinear evolution equations with nonmonotone perturbations.Z. Anal. Anwendungen 17 (1998), 859–875. MR 1669909, 10.4171/ZAA/855
Reference: [4] M. Balloti: Aronszajn’s theorem for a parabolic partial differential equation.Nonlinear Anal. 9 (1985), 1183–1187. MR 0813652, 10.1016/0362-546X(85)90029-X
Reference: [5] H. Brezis: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055
Reference: [6] T. Cardinali, A. Fiacca, N. S. Papageorgiou: Extremal solutions for nonlinear parabolic problems with discintinuities.Monatsh. Math. 124 (1997), 119–131. MR 1462858, 10.1007/BF01300615
Reference: [7] K.–C. Chang: The obstacle problem and partial differntial equations with discontinuous nonlinearities.Comm. Pure Appl. Math. 33 (1980), 117–146. MR 0562547, 10.1002/cpa.3160330203
Reference: [8] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [9] F. S. DeBlasi: Characterizations of certain classes of semicontinuous multifunctions by continuous approximations.J. Math. Anal. Appl. 106 (1985), 1–18. MR 0780314, 10.1016/0022-247X(85)90126-X
Reference: [10] F. S. DeBlasi, J. Myjak: On the solution set for differential inclusions.Bull. Polish Acad. Sci. 33 (1985), 17–23.
Reference: [11] F. S. DeBlasi, J. Myjak: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9–31. MR 0834135, 10.2140/pjm.1986.123.9
Reference: [12] J. Deuel, P. Hess: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. MR 0492636, 10.1007/BF02760403
Reference: [13] J. Diestel, J. Uhl: Vector Measures.Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). MR 0453964
Reference: [14] E. Feireisl: A note on uniqueness for parabolic problems with discontinuous nonlinearities.Nonlinear Anal. 16 (1991), 1053–1056. Zbl 0736.35060, MR 1107003, 10.1016/0362-546X(91)90106-B
Reference: [15] A. F. Filippov: Differential Equations with Discontinuous Righthand Sides.Kluwer, Dordrecht, 1988. MR 1028776
Reference: [16] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443
Reference: [17] S. Heikkila, S. Hu: On fixed points of multifunctions in ordered spaces.Appl. Anal. 51 (1993), 115–127. MR 1278995, 10.1080/00036819308840206
Reference: [18] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker Inc., New York, 1994. MR 1280028
Reference: [19] N. Hirano: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. Amer. Math. Soc. 120 (1994), 185–192. Zbl 0795.34051, MR 1174494, 10.1090/S0002-9939-1994-1174494-8
Reference: [20] S. Hu, N. S. Papageorgiou: On the topological regularity of the solution of differential inclusions with constraints.J. Differential Equations 107 (1994), 280–289. MR 1264523, 10.1006/jdeq.1994.1013
Reference: [21] D. Hyman: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91–97. Zbl 0174.25804, MR 0253303, 10.4064/fm-64-1-91-97
Reference: [22] N. Kikuchi: Kneser’s property for $\frac{\partial u}{\partial t}=\Delta u+\sqrt{u}$.Keio Math. Seminar Reports 3 (1978), 45–48. MR 0510129
Reference: [23] E. Klein, A. Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692
Reference: [24] A. Kufner, O. John, S. Fučík: Function Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1977. MR 0482102
Reference: [25] K. Kuratowski: Topology II.Academic Press, New York, 1968.
Reference: [26] J.–M. Lasry, R. Robert: Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques.C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. MR 0436196
Reference: [27] J.–L. Lions: Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires.Dunod, Paris, 1969. MR 0259693
Reference: [28] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Internat. J. Math. Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516
Reference: [29] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations.Math. Japon. 32 (1987), 437–464. Zbl 0634.28005, MR 0914749
Reference: [30] N. S. Papageorgiou: On Fatou’s lemma and parametric integrals for set–valued functions.J. Math. Anal. Appl. 187 (1994), 809–825. Zbl 0814.28005, MR 1298822, 10.1006/jmaa.1994.1391
Reference: [31] N. S. Papageorgiou: On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities.J. Math. Anal. Appl 205 (1997), 434–453. Zbl 0901.35043, MR 1428358, 10.1006/jmaa.1997.5208
Reference: [32] N. S. Papageorgiou, N. Shahzad: Existence and strong relaxation theorems for nonlinear evolution inclusions.Yokohama Math. J. 43 (1995), 73–88. MR 1414183
Reference: [33] J.–P. Puel: Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. Zbl 0331.35027, MR 0399654
Reference: [34] J. Rauch: Discontinuous semilinear differential equations and multiple-valued maps.Proc. Amer. Math. Soc. 64 (1977), 277–282. Zbl 0413.35031, MR 0442453, 10.1090/S0002-9939-1977-0442453-6
Reference: [35] D. H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems.Indiana Univ. Math. J. 21 (1972), 979–1000. Zbl 0223.35038, MR 0299921, 10.1512/iumj.1972.21.21079
Reference: [36] B.–A. Ton: Nonlinear evolution equations in Banach spaces.J. Differential Equations 9 (1971), 608–618. Zbl 0227.47043, MR 0300172, 10.1016/0022-0396(71)90027-1
Reference: [37] I. Vrabie: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. Amer. Math. Soc. 109 (1990), 653–661. Zbl 0701.34074, MR 1015686, 10.1090/S0002-9939-1990-1015686-4
Reference: [38] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer-Verlag, New York, 1990. Zbl 0684.47029, MR 0816732
.

Files

Files Size Format View
CzechMathJ_50-2000-3_3.pdf 516.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo