Title:
|
Barrelledness of generalized sums of normed spaces (English) |
Author:
|
Fernández, A. |
Author:
|
Florencio, M. |
Author:
|
Oliveros, J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
459-465 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(E_{i})_{i\in I}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_{i})_{i\in I}$ of spaces is \[ \lambda \lbrace (E_{i})_{i\in I}\rbrace :=\lbrace (x_{i})_{i\in I},x_{i}\in E_{i}, \quad \text{and}\quad (\Vert x_{i}\Vert )_{i\in I}\in \lambda \rbrace . \] Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_{i\in I}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_{i\in I}\rbrace $ to be quasi-barrelled, barrelled or locally complete. (English) |
Keyword:
|
barrelled spaces |
Keyword:
|
generalized sequences |
MSC:
|
46A08 |
MSC:
|
46A45 |
MSC:
|
46E10 |
MSC:
|
46E40 |
idZBL:
|
Zbl 1079.46500 |
idMR:
|
MR1777469 |
. |
Date available:
|
2009-09-24T10:34:42Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127585 |
. |
Reference:
|
[DFP] J. C. Díaz, M. Florencio, P. J. Paúl: A uniform boundedness theorem for $L^{\infty }(\mu ,E)$.Arch. Math. (Basel) 60 (1993), 73–78. MR 1193096, 10.1007/BF01194241 |
Reference:
|
[DFFP] S. Díaz, A. Fernández, M. Florencio, P. J. Paúl: An abstract Banach-Steinhaus theorem and applications to function spaces.Results Math. 23 (1993), 242–250. MR 1215213, 10.1007/BF03322300 |
Reference:
|
[DFP1] L. Drewnowski, M. Florencio, P. J. Paúl: Barrelled subspaces of spaces with subseries decompositions or Boolean rings of projections.Glasgow Math. J. 36 (1994), 57–69. MR 1260818, 10.1017/S0017089500030548 |
Reference:
|
[DFP2] L. Drewnowski, M. Florencio, P. J. Paúl: Barrelled function spaces.Progress in Functional Analysis, K.D. Bierstedt et al. (eds.), North-Holland Math. Studies, Elsevier/North-Holland, Amsterdam, Oxford, New York and Tokyo, 1992, pp. 191–199. MR 1150746 |
Reference:
|
[DFP3] L. Drewnowski, M. Florencio, P. J. Paúl: On the barrelledness of spaces of bounded vector functions.Arch. Math. (Basel) 63 (1994), 449–458. MR 1300741 |
Reference:
|
[FPS] M. Florencio, P. J. Paúl, C. Sáez: Barrelledness in $\lambda $-sums of normed spaces.Simon Stevin 63 (1989), 209–217. MR 1061568 |
Reference:
|
[J] H. Jarchow: Locally Convex Spaces.B.G. Teubner. Stuttgart, 1981. Zbl 0466.46001, MR 0632257 |
Reference:
|
[KR] J. Kakol, W. Roelcke: On the barrelledness of $\ell ^{p}$-direct sums of seminormed spaces for $1\le p\le \infty $.Arch. Math. (Basel) 62 (1994), 331–334. MR 1264704 |
Reference:
|
[K] G. Köthe: Topological Vector Spaces I.Springer-Verlag, Berlin, Heidelberg and New York, 1969. MR 0248498 |
Reference:
|
[L] P. Lurje: Tonnelierheit in lokalkonvexen Vektorgruppen.Manuscripta Math. 14 (1974), 107–121. MR 0367612, 10.1007/BF01171437 |
Reference:
|
[BP] P. Pérez Carreras, J. Bonet: Barrelled Locally Convex Spaces.North-Holland Math. Studies, North-Holland, Amsterdam, New York, Oxford and Tokyo, 1987. MR 0880207 |
Reference:
|
[R] R. C. Rosier: Dual spaces of certain vector sequence spaces.Pacific J. Math. 46 (1973), . Zbl 0263.46009, MR 0328544, 10.2140/pjm.1973.46.487 |
. |