Article
Summary:
In this paper we study the Denjoy-Riemann and Denjoy-McShane integrals of functions mapping an interval $\left[ a,b\right] $ into a Banach space $X.$ It is shown that a Denjoy-Bochner integrable function on $ \left[ a,b\right] $ is Denjoy-Riemann integrable on $\left[ a,b\right] $, that a Denjoy-Riemann integrable function on $\left[ a,b\right] $ is Denjoy-McShane integrable on $\left[ a,b\right] $ and that a Denjoy-McShane integrable function on $\left[ a,b\right] $ is Denjoy-Pettis integrable on $\left[ a,b\right].$ In addition, it is shown that for spaces that do not contain a copy of $c_{0}$, a measurable Denjoy-McShane integrable function on $\left[ a,b\right] $ is McShane integrable on some subinterval of $\left[ a,b\right].$ Some examples of functions that are integrable in one sense but not another are included.
References:
[1] J. Diestel, J. J. Uhl:
Vector Measures. Amer. Math. Soc., Providence, R. I., 1977.
MR 0453964
[7] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Amer. Math. Soc., 1994.
MR 1288751 |
Zbl 0807.26004
[8] R. A. Gordon: Differentiation in Banach spaces. preprint.