Previous |  Up |  Next

Article

Title: Bounded oscillation of nonlinear neutral differential equations of arbitrary order (English)
Author: Yilmaz, Y. Şahiner
Author: Zafer, A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 185-195
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with oscillation properties of $n$-th order neutral differential equations of the form \[ [x(t)+cx(\tau (t))]^{(n)}+q(t)f\bigl (x(\sigma (t))\bigr )=0,\quad t\ge t_0>0, \] where $c$ is a real number with $|c|\ne 1$, $q\in C([t_0,\infty ),\mathbb R)$, $f\in C(\mathbb R,\mathbb R)$, $\tau ,\sigma \in C([t_0,\infty ),\mathbb R_+)$ with $\tau (t)<t$ and $\lim _{t\rightarrow \infty }\tau (t)=\lim _{t\rightarrow \infty }\sigma (t)=\infty $. Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations in which $c$ is a function of $t$ and a certain type of a forcing term is present. (English)
Keyword: oscillation
Keyword: positive solutions
Keyword: neutral equation
MSC: 34K11
MSC: 34K40
idZBL: Zbl 1079.34540
idMR: MR1814644
.
Date available: 2009-09-24T10:41:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127638
.
Reference: [1] D. D.  Bainov and D. P.  Mishev: Oscillation Theory for Neutral Differential Equations with Delay.IOP Publishing Ltd., Bristol, UK, 1992. MR 1147908
Reference: [2] M. P.  Chen, J. S.  Yu and B. G. Zhang: The existence of positive solutions for even order neutral delay differential equations.Panamer. Math. J. 3 (1993), 61–77. MR 1234191
Reference: [3] Q. Chuanxi and G.  Ladas: Oscillation of neutral differential equations with variable coefficients.Appl. Anal. 32 (1989), 215–228. MR 1030096, 10.1080/00036818908839850
Reference: [4] R. S.  Dahiya and O.  Akinyele: Oscillation theorems of $n$th order functional differential equations with forcing terms.J.  Math. Anal. Appl. 109 (1985), 325–332. MR 0802898, 10.1016/0022-247X(85)90153-2
Reference: [5 R. S.  Dahiya and A.  Zafer] : Asymptotic behavior and oscillation in higher order nonlinear differential equations with retarded arguments.Acta Math. Hungar. 76(3) (1997), 257–266. MR 1459234, 10.1023/A:1006577321359
Reference: [6] E. A. Grove, M. R. S.  Kulenovic and G.  Ladas: Sufficient conditions for oscillation and nonoscillation of neutral equations.J.  Differential Equations 68 (1987), 673–682. MR 0891334
Reference: [7] I. T.  Kiguradze: On the oscillation of solutions of equation $^m u/t^m+a(t)u^m \mathop {\mathrm {sgn}} u=0$.Mat. Sb. 65 (1964), 172–187. MR 0173060
Reference: [8] V.  Lakshmikantham, L.  Wen and B. G.  Zhang: Theory of Differential Equations with Unbounded Delay.MIA Kluwer Academic Publishers, London, 1994. MR 1319339
Reference: [9] A.  Zafer and R. S.  Dahiya: Oscillation of bounded solutions of neutral differential equations.Appl. Math. Lett. 6 (1993), 43–46. MR 1347773, 10.1016/0893-9659(93)90010-K
Reference: [10] A.  Zafer: Oscillation criteria for even order neutral differential equations.Appl. Math. Lett. 11 (1998), 21–25. Zbl 0933.34075, MR 1628987, 10.1016/S0893-9659(98)00028-7
Reference: [11] B. G.  Zhang and J. S.  Yu: On the existence of asymptotically decaying positive solutions of second order neutral differential equations.J.  Math. Anal. Appl. 166 (1992), 1–11. MR 1159633, 10.1016/0022-247X(92)90322-5
.

Files

Files Size Format View
CzechMathJ_51-2001-1_18.pdf 338.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo