[1] W. Banaszczyk:
Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics 1466. Springer-Verlag, Berlin-Heidelberg-New York, 1991.
MR 1119302
[2] E. Binz:
Continuous Convergence in $C(X)$. Lecture Notes in Mathematics 469. Springer-Verlag, Berlin-Heidelberg-New York, 1975.
MR 0461418
[3] R. Brown, P. J. Higgins and S. A. Morris:
Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. Proc. Camb. Phil. Soc. 78 (1975), 19–32.
DOI 10.1017/S0305004100051483 |
MR 0453915
[4] H. P. Butzmann:
Pontryagin duality for convergence groups of unimodular continuous functions. Czechoslovak Math. J. 33 (1983), 212–220.
MR 0699022 |
Zbl 0528.54005
[5] H. P. Butzmann: $c$-Duality Theory for Convergence Groups. Lecture in the Course “Convergence and Topology”. Erice, 1998.
[10] S. Kaplan:
Extensions of the Pontryagin duality I: Infinite products. B. G. Duke Math. 15 (1948), 649–658.
MR 0026999
[11] H. Leptin:
Bemerkung zu einem Satz von S. Kaplan. B. G. Arch. der Math. 6 (1955), 264–268.
MR 0066397 |
Zbl 0065.01601
[12] E. Martín-Peinador:
A reflexive admissible topological group must be locally compact. Proc. Amer. Math. Soc. 123 (1995), 3563–3566.
DOI 10.2307/2161108 |
MR 1301516
[14] N. Roelcke and S. Dierolf:
Uniform Structures on Topological Groups and Their Quotients. Advanced Book Program. McGraw-Hill International Book Company, 1981.
MR 0644485