Previous |  Up |  Next

Article

Title: Strong reflexivity of Abelian groups (English)
Author: Bruguera, Montserrat
Author: Chasco, María Jesús
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 213-224
Summary lang: English
.
Category: math
.
Summary: A reflexive topological group $G$ is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group $G$ and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive. (English)
Keyword: Pontryagin duality theorem
Keyword: dual group
Keyword: convergence group
Keyword: continuous convergence
Keyword: reflexive group
Keyword: strong reflexive group
Keyword: k-space
Keyword: Čech complete group
Keyword: k-group
MSC: 20K45
MSC: 22A05
MSC: 46A16
MSC: 46A99
idZBL: Zbl 1079.22500
idMR: MR1814647
.
Date available: 2009-09-24T10:41:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127641
.
Reference: [1] W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics 1466.Springer-Verlag, Berlin-Heidelberg-New York, 1991. MR 1119302
Reference: [2] E. Binz: Continuous Convergence in $C(X)$. Lecture Notes in Mathematics 469.Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR 0461418
Reference: [3] R. Brown, P. J. Higgins and S. A. Morris: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties.Math. Proc. Camb. Phil. Soc. 78 (1975), 19–32. MR 0453915, 10.1017/S0305004100051483
Reference: [4] H. P. Butzmann: Pontryagin duality for convergence groups of unimodular continuous functions.Czechoslovak Math. J. 33 (1983), 212–220. Zbl 0528.54005, MR 0699022
Reference: [5] H. P. Butzmann: $c$-Duality Theory for Convergence Groups. Lecture in the Course “Convergence and Topology”.Erice, 1998.
Reference: [6] M. J. Chasco: Pontryagin duality for metrizable groups.Arch. Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160
Reference: [7] M. J. Chasco and E. Martín-Peinador: Binz-Butzmann duality versus Pontryagin duality.Arch. Math. 63 (1994), 264–270. MR 1287256, 10.1007/BF01189829
Reference: [8] C. H. Cook and H. R. Fischer: On equicontinuity and continuous convergence.Math. Ann. 159 (1965), 94–104. MR 0179752, 10.1007/BF01360283
Reference: [9] H. R. Fischer: Limesräume.Math. Ann. 137 (1959), 269–303. Zbl 0086.08803, MR 0109339
Reference: [10] S. Kaplan: Extensions of the Pontryagin duality I: Infinite products.B. G. Duke Math. 15 (1948), 649–658. MR 0026999
Reference: [11] H. Leptin: Bemerkung zu einem Satz von S. Kaplan.B. G.  Arch. der Math. 6 (1955), 264–268. Zbl 0065.01601, MR 0066397
Reference: [12] E. Martín-Peinador: A reflexive admissible topological group must be locally compact.Proc. Amer. Math. Soc. 123 (1995), 3563–3566. MR 1301516, 10.2307/2161108
Reference: [13] N. Noble: $K$-groups and duality.Trans. Amer. Math. Soc. 151 (1970), 551–561. Zbl 0229.22012, MR 0270070
Reference: [14] N. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients. Advanced Book Program.McGraw-Hill International Book Company, 1981. MR 0644485
.

Files

Files Size Format View
CzechMathJ_51-2001-1_21.pdf 383.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo