Previous |  Up |  Next

Article

Title: Existence of positive solutions for a class of higher order neutral functional differential equations (English)
Author: Tanaka, Satoshi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 573-583
Summary lang: English
.
Category: math
.
Summary: The higher order neutral functional differential equation \[ \frac{\mathrm{d}^n}{\mathrm{d}t^n} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm{(1)}\] is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)<t$ for $t\ge t_0$, $\lim _{t\rightarrow \infty } \tau (t)= \infty $, $\lim _{t\rightarrow \infty } g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1). (English)
Keyword: neutral differential equation
Keyword: positive solution
MSC: 34K11
MSC: 34K40
idZBL: Zbl 1079.34538
idMR: MR1851548
.
Date available: 2009-09-24T10:45:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127670
.
Reference: [1] S. J.  Bilchev, M. K.  Grammatikopoulos and I. P.  Stavroulakis: Oscillations of higher order neutral differential equations.J.  Austral. Math. Soc. Ser.  A 52 (1992), 261–284. MR 1143194, 10.1017/S1446788700034406
Reference: [2] Y. Chen: Existence of nonoscillatory solutions of $n$th order neutral delay differential equations.Funkcial. Ekvac. 35 (1992), 557–570. Zbl 0787.34056, MR 1199474
Reference: [3] L. H.  Erbe and J. S.  Yu: Linearized oscillations for neutral equations I: Odd order.Hiroshima Math.  J. 26 (1996), 557–572. MR 1421226, 10.32917/hmj/1206127259
Reference: [4] L. H.  Erbe and J. S.  Yu: Linearized oscillations for neutral equations II: Even order.Hiroshima Math.  J. 26 (1996), 573–585. MR 1421227, 10.32917/hmj/1206127260
Reference: [5] K. Gopalsamy: Oscillation and nonoscillation in neutral differential equations with variable parameters.J.  Math. Phys. Sci. 21 (1987), 593–611. Zbl 0655.34058, MR 0932884
Reference: [6] K. Gopalsamy, B. S.  Lalli and B. G.  Zhang: Oscillation of odd order neutral differential equations.Czechoslovak Math.  J. 42 (1992), 313–323. MR 1179502
Reference: [7] J. Jaroš and T. Kusano: Oscillation theory of higher order linear functional differential equations of neutral type.Hiroshima Math.  J. 18 (1988), 509–531. MR 0991245, 10.32917/hmj/1206129616
Reference: [8] J. Jaroš and T. Kusano: Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type.Funkcial. Ekvac. 32 (1989), 251–263. MR 1019433
Reference: [9] Y. Kitamura and T. Kusano: Existence theorems for a neutral functional differential equation whose leading part contains a difference operator of higher degree.Hiroshima Math.  J. 25 (1995), 53–82. MR 1322602, 10.32917/hmj/1206127825
Reference: [10] W. D.  Lu: Existence and asymptotic behavior of nonoscillatory solutions to nonlinear second-order equations of neutral type.Acta Math. Sinica 36 (1993), 476–484. (Chinese) MR 1248661
Reference: [11] M. Naito: An asymptotic theorem for a class of nonlinear neutral differential equations.Czechoslovak Math.  J 48(123) (1998), 419–432. Zbl 0955.34064, MR 1637902, 10.1023/A:1022419609784
Reference: [12] Y. Naito: Nonoscillatory solutions of neutral differential equations.Hiroshima Math.  J. 20 (1990), 231–258. Zbl 0721.34091, MR 1063362, 10.32917/hmj/1206129177
Reference: [13] Y. Naito: Asymptotic behavior of decaying nonoscillatory solutions of neutral differential equations.Funkcial. Ekvac. 35 (1992), 95–110. Zbl 0771.34054, MR 1172423
Reference: [14] Y. Naito: Existence and asymptotic behavior of positive solutions of neutral differential equations.J.  Math. Anal. Appl. 188 (1994), 227–244. Zbl 0818.34036, MR 1301729, 10.1006/jmaa.1994.1424
Reference: [15] Y. Naito: A note on the existence of nonoscillatory solutions of neutral differential equations.Hiroshima Math.  J. 25 (1995), 513–518. Zbl 0849.34057, MR 1364070, 10.32917/hmj/1206127628
Reference: [16] J. Ruan: Type and criteria of nonoscillatory solutions for second order linear neutral differential equations.Chinese Ann. Math. Ser.  A 8 (1987), 114–124. (Chinese) MR 0901645
Reference: [17] S. Tanaka: Existence and asymptotic behavior of solutions of nonlinear neutral differential equations.In preparation.
Reference: [18] S. Tanaka: Existence of positive solutions for a class of first-order neutral functional differential equations.J.  Math. Anal. Appl. 229 (1999), 501–518. Zbl 0920.34066, MR 1666428, 10.1006/jmaa.1998.6176
Reference: [19] X. H.  Tang and J. H.  Shen: Oscillation and existence of positive solutions in a class of higher order neutral equations.J.  Math. Anal. Appl. 213 (1997), 662–680. MR 1470876, 10.1006/jmaa.1997.5567
Reference: [20] B. G.  Zhang and J. S.  Yu: On the existence of asymptotically decaying positive solutions of second order neutral differential equations.J.  Math. Anal. Appl. 166 (1992), 1–11. MR 1159633, 10.1016/0022-247X(92)90322-5
Reference: [21] B. G.  Zhang, J. S.  Yu and Z. C.  Wang: Oscillations of higher order neutral differential equations.Rocky Mountain J. Math. 25 (1995), 557–568. MR 1340027, 10.1216/rmjm/1181072302
.

Files

Files Size Format View
CzechMathJ_51-2001-3_10.pdf 335.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo