Previous |  Up |  Next

Article

Title: Principal ideals of finitely generated commutative monoids (English)
Author: Rosales, J. C.
Author: García-García, J. I.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 75-85
Summary lang: English
.
Category: math
.
Summary: We study the semigroups isomorphic to principal ideals of finitely generated commutative monoids. We define the concept of finite presentation for this kind of semigroups. Furthermore, we show how to obtain information on these semigroups from their presentations. (English)
Keyword: monoid
Keyword: ideal
Keyword: cancellative
Keyword: torsion free
MSC: 20M05
MSC: 20M12
MSC: 20M14
MSC: 20M30
idZBL: Zbl 1003.20052
idMR: MR1885458
.
Date available: 2009-09-24T10:49:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127703
.
Reference: [1] T.  Becker and W.  Weispfenning: Gröbner Bases: a Computational Approach to Commutative Algebra.Springer-Verlag, New York, 1993. MR 1213453
Reference: [2] A. H.  Clifford: The Algebraic Theory of Semigroups.Amer. Math. Soc., Providence, 1961. Zbl 0111.03403
Reference: [3] D.  Eisenbud and B.  Sturmfels: Binomial ideals.Duke Math. J. 84 (1996), 1–45. MR 1394747, 10.1215/S0012-7094-96-08401-X
Reference: [4] R.  Gilmer: Commutative Semigroup Rings.University of Chicago Press, Chicago, 1984. Zbl 0566.20050, MR 0741678
Reference: [5] J.  Herzog: Generators and relations of abelian semigroup and semigroups rings.Manuscripta Math. 3 (1970), 175–193. MR 0269762, 10.1007/BF01273309
Reference: [6] G. B. Preston: Rédei’s characterization of congruences of finitely generated free commutative semigroups.Acta Math. Acad. Sci. Hungar. 26 (1975), 337–342. MR 0473051, 10.1007/BF01902341
Reference: [7] L.  Rédei: The theory of finitely commutative semigroups.Pergamon, Oxford-Edinburgh-New York, 1965. MR 0188322
Reference: [8] J. C.  Rosales and P. A.  García-Sánchez: Finitely generated commutative monoids.vol. xiv, Nova Science Publishers, New York, 1999. MR 1694173
Reference: [9] J. C.  Rosales and J. M.  Urbano-Blanco: A deterministic algorithm to decide if a finitely presented monoid is cancellative.Comm. Algebra 24 (1996), 4217–4224. MR 1414579, 10.1080/00927879608825809
Reference: [10] J. C.  Rosales: On finitely generated submonoids of $N^k$.Semigroup Forum 50 (1995), 251–262. MR 1315517, 10.1007/BF02573522
Reference: [11] J. C.  Rosales and P. A.  García-Sánchez: Presentations for subsemigroups of finitely generated commutative semigroups.Israel J. Math. 113 (1999), 269–283. MR 1729450, 10.1007/BF02780180
.

Files

Files Size Format View
CzechMathJ_52-2002-1_8.pdf 356.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo