Previous |  Up |  Next

Article

Title: Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients (English)
Author: Barbu, Dorel
Author: Bocşan, Gheorghe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 87-95
Summary lang: English
.
Category: math
.
Summary: In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones. (English)
Keyword: mild solution
Keyword: Picard approximations
MSC: 34F05
MSC: 34G20
MSC: 35R60
MSC: 60H15
idZBL: Zbl 1001.60068
idMR: MR1885459
.
Date available: 2009-09-24T10:49:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127704
.
Reference: [1] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii: Measures of Noncompactness and Condensing Operators.Birkhauser-Verlag, Basel-Boston-Berlin, 1992. MR 1153247
Reference: [2] V. Bally, I.  Gyöngy and E.  Pardoux: White noise driven parabolic SPDEs with measurable drift.J.  Funct. Anal. 120 (1994), 484–510. MR 1266318, 10.1006/jfan.1994.1040
Reference: [3] D. Barbu: Local and global existence for mild solutions of stochastic differential equations.Portugal. Math. 55 (1998), 411–424. Zbl 0931.60053, MR 1672110
Reference: [4] G.  Da Prato and J. Zabczyk: A note on stochastic convolution.Stochastic Anal. Appl. 10 (1992), 143–153. MR 1154532, 10.1080/07362999208809260
Reference: [5] G.  Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge Univ. Press, Cambridge, 1992. MR 1207136
Reference: [6] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems.Cambridge Univ. Press, Cambridge, 1996. MR 1417491
Reference: [7] M. Eddabhi and M.  Erraoui: On quasi-linear parabolic SPDEs with non-Lipschitz coefficients.Random Oper. and Stochastic Equations 6 (1998), 105–126. MR 1609543
Reference: [8] A. Ichikawa: Stability of semilinear stochastic evolution equation.J.  Math. Anal. Appl. 90 (1982), 12–44. MR 0680861, 10.1016/0022-247X(82)90041-5
Reference: [9] R. Manthey: Convergence of successive approximation for parabolic partial differential equations with additive white noise.Serdica 16 (1990), 194–200. Zbl 0723.65149, MR 1089857
Reference: [10] R.  Manthey and T.  Zausinger: Stochastic evolution equations in $L_{\rho }^{2\nu }$.Stochastics Stochastics Rep. 66 (1999), 37–85. MR 1687799, 10.1080/17442509908834186
Reference: [11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer Verlag, New York, 1983. Zbl 0516.47023, MR 0710486
Reference: [12] J.  Seidler: Da Prato-Zabczyk’s maximal inequality revisited I.Math. Bohem. 118 (1993), 67–106. Zbl 0785.35115, MR 1213834
Reference: [13] T.  Taniguchi: On the estimate of solutions of perturbed linear differential equations.J.  Math. Anal. Appl. 153 (1990), 288–300. Zbl 0727.34040, MR 1080132, 10.1016/0022-247X(90)90279-O
Reference: [14] T. Taniguchi: Successive Approximations to Solutions of Stochastic Differential Equations.J.  Differential Equations 96 (1992), 152–169. Zbl 0744.34052, MR 1153313, 10.1016/0022-0396(92)90148-G
Reference: [15] L.  Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral.Stochastic Anal. Appl. 2 (1984), 187–192. Zbl 0539.60056, MR 0746435, 10.1080/07362998408809032
Reference: [16] T.  Yamada: On the successive approximation of solutions of stochastic differential equations.J.  Math. Sci. Univ. Kyoto 21 (1981), 501–515. Zbl 0484.60053, MR 0629781, 10.1215/kjm/1250521975
.

Files

Files Size Format View
CzechMathJ_52-2002-1_9.pdf 340.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo