Previous |  Up |  Next

Article

Title: A note on normal varieties of monounary algebras (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 369-373
Summary lang: English
.
Category: math
.
Summary: A variety is called normal if no laws of the form $s=t$ are valid in it where $s$ is a variable and $t$ is not a variable. Let $L$ denote the lattice of all varieties of monounary algebras $(A,f)$ and let $V$ be a non-trivial non-normal element of $L$. Then $V$ is of the form ${\mathrm Mod}(f^n(x)=x)$ with some $n>0$. It is shown that the smallest normal variety containing $V$ is contained in ${\mathrm HSC}({\mathrm Mod}(f^{mn}(x)=x))$ for every $m>1$ where ${\mathrm C}$ denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of $L$ consisting of all normal elements of $L$ is isomorphic to $L$. (English)
Keyword: monounary algebra
Keyword: variety
Keyword: normal variety
Keyword: choice algebra
MSC: 08A60
MSC: 08B15
idZBL: Zbl 1011.08006
idMR: MR1905444
.
Date available: 2009-09-24T10:51:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127725
.
Reference: [1] I. Chajda: Normally presented varieties.Algebra Universalis 34 (1995), 327–335. Zbl 0842.08007, MR 1350845, 10.1007/BF01182089
Reference: [2] E. Graczyńska: On normal and regular identities.Algebra Universalis 27 (1990), 387–397. MR 1058483, 10.1007/BF01190718
Reference: [3] E. Jacobs and R. Schwabauer: The lattice of equational classes of algebras with one unary operation.Am. Math. Monthly 71 (1964), 151–155. MR 0162740, 10.2307/2311743
Reference: [4] D. Jakubíková-Studenovská: Endomorphisms and connected components of partial monounary algebras.Czechoslovak Math. J. 35 (1985), 467–490. MR 0803041
Reference: [5] D. Jakubíková-Studenovská: On completions of partial monounary algebras.Czechoslovak Math. J. 38 (1988), 256–268. MR 0946294
Reference: [6] O. Kopeček and M. Novotný: On some invariants of unary algebras.Czechoslovak Math. J. 24 (1974), 219–246. MR 0347703
Reference: [7] I. I. Mel’nik: Nilpotent shifts of varieties.Math. Notes (New York) 14 (1973), 692–696. MR 0366782
Reference: [8] M. Novotný: Über Abbildungen von Mengen.Pacific J. Math. 13 (1963), 1359–1369. MR 0157143, 10.2140/pjm.1963.13.1359
.

Files

Files Size Format View
CzechMathJ_52-2002-2_13.pdf 304.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo