Previous |  Up |  Next

Article

Title: Incidence structures of type $(p, n)$ (English)
Author: Machala, František
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 9-18
Summary lang: English
.
Category: math
.
Summary: Every incidence structure ${\mathcal J}$ (understood as a triple of sets $(G, M, I)$, ${I}\subseteq G \times M$) admits for every positive integer $p$ an incidence structure ${\mathcal J}^p=(G^p, M^p, \mathrel {{\mathrm I}^p})$ where $G^p$ ($M^p$) consists of all independent $p$-element subsets in $G$ ($M$) and $\mathrel {{\mathrm I}^p}$ is determined by some bijections. In the paper such incidence structures ${\mathcal J}$ are investigated the ${\mathcal J}^p$’s of which have their incidence graphs of the simple join form. Some concrete illustrations are included with small sets $G$ and $M$. (English)
Keyword: incidence structures
Keyword: independent sets
MSC: 06B05
MSC: 08A02
MSC: 08A35
idZBL: Zbl 1015.08001
idMR: MR1961995
.
Date available: 2009-09-24T10:58:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127777
.
Reference: [1] B. Ganter and R. Wille: Formale Begriffsanalyse. Mathematische Grundlagen. (Formal Concept Analysis Mathematical Foundations).Springer-Verlag, Berlin, 1996. (German) MR 1715047
Reference: [2] F. Buekenhout (ed.): Handbook of Incidence Geometry: Buldings and Foundations. Chap. 6.North-Holland, Amsterdam, 1995. MR 1360715
Reference: [3] F. Machala: Incidence structues of indpendent sets.Acta Univ. Palacki. Olomouc, Fac. rer. nat., Mathematica 38 (1999), 113–118. MR 1767196
.

Files

Files Size Format View
CzechMathJ_53-2003-1_2.pdf 331.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo