Previous |  Up |  Next

Article

Title: Behavior of invariant metrics near convexifiable boundary points (English)
Author: Nikolov, Nikolai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: The behaviour of the Carathéodory, Kobayashi and Azukawa metrics near convex boundary points of domains in $\mathbb{C}^n$ is studied. (English)
Keyword: Carathéodory metric
Keyword: Kobayashi metric
Keyword: Azukawa metric
Keyword: convexifiable point
MSC: 32F45
idZBL: Zbl 1018.32012
idMR: MR1961994
.
Date available: 2009-09-24T10:58:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127776
.
Reference: [1] K. Azukawa: The invariant pseudo-metric related to negative plurisubharmonic functions.Kodai Math.  J. 10 (1987), 83–92. Zbl 0618.32020, MR 0879385, 10.2996/kmj/1138037363
Reference: [2] D. Coman: Boundary behavior of the pluricomplex Green function.Ark. Mat. 36 (1998), 341–353. Zbl 1021.32015, MR 1650450, 10.1007/BF02384773
Reference: [3] H.  Gaussier: Tautness and complete hyperbolicity of domains in $\mathbb{C}^n$.Proc. Amer. Math. Soc. 127 (1999), 105–116. MR 1458872, 10.1090/S0002-9939-99-04492-5
Reference: [4] I.  Graham: Boundary behavior of the Carathédory and Kobayashi metrics on strongly pseudoconvex domains in $\mathbb{C}^n$ with smooth boundary.Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 0372252
Reference: [5] M.  Klimek: Extremal plurisubharmonic function and invariant pseudodistances.Bull. Soc. Math. France 113 (1985), 231–240. MR 0820321, 10.24033/bsmf.2029
Reference: [6] J.  Kohn: Global regularity for $\bar{\partial }\Re $ on weakly pseudoconvex manifolds.Trans. Amer. Math. Soc. 181 (1973), 273–292. MR 0344703
Reference: [7] L.  Lempert: Holomorphic retracts and intrinsic metrics in convex domains.Analysis Mathematica 8 (1982), 257–261. Zbl 0509.32015, MR 0690838, 10.1007/BF02201775
Reference: [8] N.  Nikolov: Localization, stability and boundary behavior of the Kobayashi metrics.Preprint ESI 790, Vienna, 1999, pp. 11. MR 1910713
Reference: [9] N.  Sibony: Une classe de domaines pseudoconvexes.Duke Math.  J. 55 (1987), 299–319. Zbl 0622.32016, MR 0894582, 10.1215/S0012-7094-87-05516-5
.

Files

Files Size Format View
CzechMathJ_53-2003-1_1.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo