[1] H.  Berens and A.  DeVore: 
Quantitative Korovkin theorems for positive linear operators in  $L_p$ space. Trans. Amer. Math. Soc. 245 (1978), 349–361. 
MR 0511414[4] V. K.  Dzyadik: 
On the approximation of functions by linear positive operators and singular integrals. Mat. Sbornik 70 (1966), 508–517. (Russian) 
MR 0208243[5] A. D.  Gadziev: 
The convergence problem for a sequence of positive linear operators on unbounded sets, and Theorems analogous to that of P. P.  Korovkin. Dokl. Akad. Nauk SSSR 218, no. 5. 
MR 0367522 | 
Zbl 0312.41013[6] A. D.  Gadjiev: On P. P. Korovkin type theorems. Math. Zametki, Vol. 20 (1976). (Russian)
[7] N. B.  Haaser and J. A.  Sullivan: 
Real Analysis. Dover Publications, INC, New York, 1991. 
MR 1088254[9] A.  Kufner, O.  John and S.  Fučík: 
Function Spaces. Academia, Prague, 1977. 
MR 0482102[12] J. J.  Swetits and B.  Wood: 
On degree of $L_p$-approximation with positive linear operators. J. Approx. Theory 87 (1996), 239–241. 
MR 1418496