Previous |  Up |  Next

Article

Title: On Korovkin type theorem in the space of locally integrable functions (English)
Author: Gadjiev, A. D.
Author: Efendiyev, R. O.
Author: Ibikli, E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 45-53
Summary lang: English
.
Category: math
.
Summary: It is shown that a Korovkin type theorem for a sequence of linear positive operators acting in weighted space $L_{p,w}({\mathrm loc})$ does not hold in all this space and is satisfied only on some subspace. (English)
Keyword: linear positive operators
Keyword: Korovkin type theorem
Keyword: weighted $L_p({\mathrm loc})$ spaces
MSC: 41A25
MSC: 41A36
MSC: 41A65
idZBL: Zbl 1013.41011
idMR: MR1961997
.
Date available: 2009-09-24T10:58:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127779
.
Reference: [1] H.  Berens and A.  DeVore: Quantitative Korovkin theorems for positive linear operators in  $L_p$ space.Trans. Amer. Math. Soc. 245 (1978), 349–361. MR 0511414
Reference: [2] S. J.  Bernau: Theorems of Korovkin type for  $L^p$ spaces.Pacific J.  Math. 53 (1974), 11–19. MR 0393979, 10.2140/pjm.1974.53.11
Reference: [3] K.  Donner: Korovkin Theorems in $L^p$-spaces.J.  Funct. Anal. 42 (1981), 12–28. MR 0620578, 10.1016/0022-1236(81)90046-X
Reference: [4] V. K.  Dzyadik: On the approximation of functions by linear positive operators and singular integrals.Mat. Sbornik 70 (1966), 508–517. (Russian) MR 0208243
Reference: [5] A. D.  Gadziev: The convergence problem for a sequence of positive linear operators on unbounded sets, and Theorems analogous to that of P. P.  Korovkin.Dokl. Akad. Nauk SSSR 218, no. 5. Zbl 0312.41013, MR 0367522
Reference: [6] A. D.  Gadjiev: On P. P. Korovkin type theorems.Math. Zametki, Vol. 20 (1976). (Russian)
Reference: [7] N. B.  Haaser and J. A.  Sullivan: Real Analysis.Dover Publications, INC, New York, 1991. MR 1088254
Reference: [8] W.  Kitto and D. E.  Walbert: Korovkin approximations in $L^p$-spaces.Pacific J.  Math. 63 (1976), 153–167. MR 0417658, 10.2140/pjm.1976.63.153
Reference: [9] A.  Kufner, O.  John and S.  Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [10] M. W.  Muller: $L_p$-approximation by the method of integral Meyer-König and Zeller operators.Studia Math. 63 (1978), 81–88. MR 0508883, 10.4064/sm-63-1-81-88
Reference: [11] J. J.  Swetits and B.  Wood: Quantitative estimates for $L_p$-approximation with positive linear operators.J. Approx. Theory 38 (1983), 81–89. MR 0700880, 10.1016/0021-9045(83)90144-2
Reference: [12] J. J.  Swetits and B.  Wood: On degree of $L_p$-approximation with positive linear operators.J. Approx. Theory 87 (1996), 239–241. MR 1418496
Reference: [13] B.  Wood: Degree of $L_p$-approximation with certain positive convolution operators.J. Approx. Theory 23 (1978), 354–363. MR 0509565, 10.1016/0021-9045(78)90087-4
.

Files

Files Size Format View
CzechMathJ_53-2003-1_4.pdf 313.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo