Previous |  Up |  Next

Article

Title: On 2-homogeneity of monounary algebras (English)
Author: Jakubíková-Studenovská, Danica
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 55-68
Summary lang: English
.
Category: math
.
Summary: Fraïssé introduced the notion of a $k$-set-homogeneous relational structure. In the present paper the following classes of monounary algebras are described: $\mathcal Sh_2(S)$, $\mathcal Sh_2(S^c)$, $\mathcal Sh_2(P^c)$ —the class of all algebras which are 2-set-homogeneous with respect to subalgebras, connected subalgebras, connected partial subalgebras, respectively, and $\mathcal H_2(S)$, $\mathcal H_2(S^c)$, $\mathcal H_2(P^c)$ —the class of all algebras which are 2-homogeneous with respect to subalgebras, connected subalgebras, connected partial subalgebras, respectively. (English)
Keyword: monounary algebra
Keyword: homogeneous
Keyword: 2-homogeneous
Keyword: 2-set-homogeneous
MSC: 08A60
idZBL: Zbl 1014.08005
idMR: MR1961998
.
Date available: 2009-09-24T10:58:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127780
.
Reference: [1] B.  Csákány: Homogeneous algebras.In: Contributions to General Algebra. Proc. Klagenfurt Conference, 1978, Verlag J.  Heyn, Klagenfurt, 1979, pp. 77–81. MR 0537408
Reference: [2] B.  Csákány: Homogeneous algebras are functionally complete.Algebra Universalis 11 (1980), 149–158. MR 0588208, 10.1007/BF02483093
Reference: [3] B.  Csákány and T. Gavalcová: Finite homogeneous algebras  I.Acta Sci. Math. 42 (1980), 57–65. MR 0576935
Reference: [4] M.  Droste and H. D.  Macpherson: On $k$-homogeneous posets and graphs.J.  Comb. Theory Ser. A 56 (1991), 1–15. MR 1082839, 10.1016/0097-3165(91)90018-C
Reference: [5] M.  Droste, M.  Giraudet, H. D.  Macpherson and N.  Sauer: Set-homogeneous graphs.J.  Comb. Theory Ser. B 62 (1994), 63–95. MR 1290631, 10.1006/jctb.1994.1055
Reference: [6] M.  Droste, M.  Giraudet and D.  Macpherson: Set-homogeneous graphs and embeddings of total orders.Order 14 (1997), 9–20. MR 1468952, 10.1023/A:1005880810385
Reference: [7] R.  Fraïssé: Theory of Relations.North-Holland, Amsterdam, 1986. MR 0832435
Reference: [8] B.  Ganter, J.  Płonka and H.  Werner: Homogeneous algebras are simple.Fund. Math. 79 (1973), 217–220. MR 0319859, 10.4064/fm-79-3-217-220
Reference: [9] D.  Jakubíková-Studenovská: Homogeneous monounary algebras.Czechoslovak Math.  J. 52 (2002), 309–317. MR 1905437, 10.1023/A:1021722527256
Reference: [10] D.  Jakubíková-Studenovská: On homogeneous and 1-homogeneous monounary algebras.In: Contributions to General Algebra 12.  Proceedings of the Vienna Conference, June, 1999, Verlag J. Heyn, Klagenfurt, 2000, pp. 222–224.
Reference: [11] E.  Marczewski: Homogeneous algebras and homogeneous operations.Fund. Math. 56 (1964), 81–103. MR 0176950, 10.4064/fm-56-1-81-103
Reference: [12] A. H.  Mekler: Homogeneous partially ordered sets.In: Finite and Infinite Combinatorics in Sets and Logic. Proceeding NATO ASI conference in Banf 1991, N. W.  Sauer, R. E.  Woodrow and B.  Sands (eds.), Kluwer, Dordrecht, 1993, pp. 279–288. Zbl 0845.06002, MR 1261211
Reference: [13] R. S.  Pierce: Some questions about complete Boolean algebras.In: Lattice Theory, Proc. Symp. Pure Math, Vol.  II, AMS, Providence, 1961, pp. 129–140. Zbl 0101.27104, MR 0138570
.

Files

Files Size Format View
CzechMathJ_53-2003-1_5.pdf 355.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo