Previous |  Up |  Next

Article

Title: Nonlinear elliptic differential equations with multivalued nonlinearities (English)
Author: Fiacca, Antonella
Author: Matzakos, Nikolas
Author: Papageorgiou, Nikolaos S.
Author: Servadei, Raffaella
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 135-159
Summary lang: English
.
Category: math
.
Summary: In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally, in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem). (English)
Keyword: upper solution
Keyword: lower solution
Keyword: order interval
Keyword: truncation function
Keyword: pseudomonotone operator
Keyword: coercive operator
Keyword: extremal solution
Keyword: Yosida approximation
Keyword: nonsmooth Palais-Smale condition
Keyword: critical point
Keyword: eigenvalue problem
MSC: 35J20
MSC: 35J60
MSC: 35R70
idZBL: Zbl 1029.35093
idMR: MR1962005
.
Date available: 2009-09-24T10:59:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127787
.
Reference: [1] R. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] H.  Amann: Order structures and fixed points.Atti Anal. Funz. Appl, Univ. Cosenza, Italy, 1997, pp. 349–381.
Reference: [3] A. Ambrosetti and R. Rabinowitz: Dual variational methods in critical point theory and applications.J.  Funct. Anal. 14 (1973), 349–381. MR 0370183, 10.1016/0022-1236(73)90051-7
Reference: [4] A. Ambrosetti and R. Turner: Some discontinuous variational problems.Differential Integral Equations 1 (1988), 341–350. MR 0929921
Reference: [5] A. Ambrosetti and M. Badiale: The dual variational principle and elliptic problems with discontinuous nonlinearities.J. Math. Anal. Appl. 140 (1989), 363–373. MR 1001862, 10.1016/0022-247X(89)90070-X
Reference: [6] M. Badiale: Semilinear elliptic problems in  $\mathbb{R}^N$ with discontinuous nonlinearities.Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 293–305. MR 1366063
Reference: [7] S. Carl and S.  Heikkika: An existence result for elliptic differential inclusions with discontinuous nonlinearity.Nonlinear Anal. 18 (1992), 471–472. MR 1152722, 10.1016/0362-546X(92)90014-6
Reference: [8] K.-C.  Chang: Variational methods for nondifferentiable functionals and its applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246, 10.1016/0022-247X(81)90095-0
Reference: [9] F. H. Clarke: Optimization and Nonsmoooth Analysis.Wiley, New York, 1983. MR 0709590
Reference: [10] D. Costa and J. Goncalves: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. Appl. 153 (1990), 470–485. MR 1080660, 10.1016/0022-247X(90)90226-6
Reference: [11] E. Dancer and G. Sweers: On the existence of a maximal weak solution for a semilinear elliptic equation.Differential Integral Equations 2 (1989), 533–540. MR 0996759
Reference: [12] J. Deuel and P. Hess: A criterion for the existence of solutions of nonlinear elliptic boundary value problems.Proc. Royal Soc. Edinburg 74 (1974-1975), 49–54. MR 0440191
Reference: [13] D. Gilbarg and N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 1983. MR 0737190
Reference: [14] J.-P.  Gossez and V.  Mustonen: Pseudomonotonicity and the Leray-Lions condition.Differential Intgral Equations 6 (1993), 37–46. MR 1190164
Reference: [15] S. Heikkila and S. Hu: On fixed points of multifunvtions in ordered spaces.Appl. Anal. 54 (1993), 115–127. MR 1278995
Reference: [16] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [17] R.  Landes: On Galerkin’s method in the existence theory of quasilinear elliptic equations.J. Funct. Anal. 39 (1980), 123–148. Zbl 0452.35037, MR 0597807
Reference: [18] J. Leray and J. L. Lions: Quelques resultats de Visik sur les problems elliptiques nonlinearairies par methodes de Minty-Browder.Bull. Soc. Math. France 93 (1965), 97–107. MR 0194733
Reference: [19] P.  Lindqvist: On the equation $\div (|Dx|^{p-2}Dx)+\lambda |x|^{p-2}x=0$.Proc. Amer. Math. Soc. 109 (1990), 157–164. Zbl 0714.35029, MR 1007505
Reference: [20] M. Marcus and V. Mizel: Alsolute continuity on tracks and mappings of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765, 10.1007/BF00251378
Reference: [21] J.-J. Moreau: La notion de sur-potentiel et les liaisons unilaterales en elastostatique.CRAS Paris 267 (1968), 954–957. Zbl 0172.49802, MR 0241038
Reference: [22] P. D. Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer-Verlag, Berlin, 1993. Zbl 0826.73002, MR 1385670
Reference: [23] C. Stuart: Maximal and minimal solutions of elliptic differential equations with discontinuous nonlinearities.Math. Zeitsch. 163 (1978), 239–249. MR 0513729, 10.1007/BF01174897
Reference: [24] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations.J. Differential Equations 51 (1894), 126–150. MR 0727034
Reference: [25] E.  Zeidler: Nonlinear Functional Analysis and Its Applications II.Springer-Verlag, New York, 1990. Zbl 0684.47029, MR 0816732
.

Files

Files Size Format View
CzechMathJ_53-2003-1_12.pdf 436.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo