Title:
|
Some properties of residuated lattices (English) |
Author:
|
Bělohlávek, Radim |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2003 |
Pages:
|
161-171 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate some (universal algebraic) properties of residuated lattices—algebras which play the role of structures of truth values of various systems of fuzzy logic. (English) |
Keyword:
|
residuated lattice |
Keyword:
|
fuzzy logic |
Keyword:
|
variety |
Keyword:
|
congruence |
MSC:
|
03B52 |
MSC:
|
06F05 |
MSC:
|
08A30 |
MSC:
|
08A40 |
MSC:
|
08B05 |
idZBL:
|
Zbl 1014.03510 |
idMR:
|
MR1962006 |
. |
Date available:
|
2009-09-24T11:00:05Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127788 |
. |
Reference:
|
[1] R. Bělohlávek: On the regularity of MV-algebras and Wajsberg hoops.Algebra Universalis 44 (2000), 375–377. MR 1816031, 10.1007/s000120050194 |
Reference:
|
[2] G. Birkhoff: Lattice Theory, 3rd ed. AMS Colloq. Publ., vol. XXV.Providence, Rhode Island, 1967. MR 0227053 |
Reference:
|
[3] I. Chajda: Locally regular varieties.Acta Sci. Math. (Szeged) 64 (1998), 431–435. Zbl 0913.08006, MR 1666006 |
Reference:
|
[4] C. C. Chang: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[5] C. C. Chang: A new proof of completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–90. MR 0122718 |
Reference:
|
[6] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning.Kluwer, Dordrecht, 1999. MR 1786097 |
Reference:
|
[7] R. Cignoli, F. Esteva, L. Godo and A. Torrens: Basic fuzzy logic is the logic of continuous $t$-norms and their residua.Soft Computing 4 (2000), 106–112. 10.1007/s005000000044 |
Reference:
|
[8] B. Csákány: Characterizations of regular varieties.Acta Sci. Math. (Szeged) 31 (1970), 187–189. MR 0272697 |
Reference:
|
[9] R. P. Dilworth and M. Ward: Residuated lattices.Trans. Amer. Math. Soc. 45 (1939), 335–354. MR 1501995, 10.1090/S0002-9947-1939-1501995-3 |
Reference:
|
[10] K. Fichtner: Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen.Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21–25. Zbl 0198.33601, MR 0256968 |
Reference:
|
[11] J. Font, A. Rodriguez and A. Torrens: Wajsberg algebras.Stochastica 8 (1984), 5–31. MR 0780136 |
Reference:
|
[12] J. A. Goguen: The logic of inexact concepts.Synthese 19 (1968–69), 325–373. 10.1007/BF00485654 |
Reference:
|
[13] G. Grätzer: Two Mal’cev-type theorems in universal algebra.J. Comb. Theory 8 (1970), 334–342. |
Reference:
|
[14] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht, 1998. MR 1900263 |
Reference:
|
[15] U. Höhle: Commutative residuated monoids.In: Non-classical logics and their applications to fuzzy subsets, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995. |
Reference:
|
[16] U. Höhle: On the fundamentals of fuzzy set theory.J. Math. Anal. Appl. 201 (1996), 786–826. MR 1400564, 10.1006/jmaa.1996.0285 |
Reference:
|
[17] B. Jónsson: On the representation of lattices.Math. Scand. 2 (1953), 295–314. |
Reference:
|
[18] A. I. Mal’cev: On the general theory of algebraic systems.Matem. Sbornik 35 (1954), 3–20. (Russian) |
Reference:
|
[19] V. Novák, I. Perfilieva and J. Močkoř: Mathematical Principles of Fuzzy Logic.Kluwer, Dordrecht, 1999. MR 1733839 |
Reference:
|
[20] J. Pavelka: On fuzzy logic I, II, III.Zeit. Math. Log. Grungl. Math. 25 (1979), 45–52, 119–134, 447–464. MR 0524558 |
Reference:
|
[21] A. Ursini: On subtractive varieties I.Algebra Universalis 31 (1994), 204–222. Zbl 0799.08010, MR 1259350, 10.1007/BF01236518 |
Reference:
|
[22] R. Wille: Kongruenzklassengeometrien. Lecture Notes in Math.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0262149 |
. |