Previous |  Up |  Next

Article

Title: On generalizations of Ostrowski inequality and some related results (English)
Author: Dedić, Lj.
Author: Pečarić, J.
Author: Ujević, N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 173-189
Summary lang: English
.
Category: math
.
Summary: Some generalizations of the Ostrowski inequality, the Milovanović-Pečarić-Fink inequality, the Dragomir-Agarwal inequality and the Hadamard inequality are given. (English)
Keyword: Ostrowski inequality
Keyword: Milovanović-Pečarić-Fink inequality
Keyword: Dragomir-Agarwal inequality
Keyword: Hadamard inequality
MSC: 26D10
MSC: 26D15
idZBL: Zbl 1013.26020
idMR: MR1962007
.
Date available: 2009-09-24T11:00:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127789
.
Reference: [1] A.  Ostrowski: Über die Absolutabweichung einer differentierbaren Funktionen von ihren Integralmittelwort.Comment. Math. Helv. 10 (1938), 226–227. MR 1509574, 10.1007/BF01214290
Reference: [2] D. S.  Mitrinović, J.  Pečarić and A. M.  Fink: Inequalities Involving Functions and Their Integrals and Derivatives.Kluwer Acad. Publ., Dordrecht, 1991. MR 1190927
Reference: [3] G. V.  Milovanović and J. E.  Pečarić: On generalizations of the inequality of A.  Ostrowski and some related applications.Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No 544–No 576 (1976), 155–158. MR 0457648
Reference: [4] A. M.  Fink: Bounds of the derivation of a function from its avereges.Czechoslovak Math.  J. 42(117) (1992), 289–310. MR 1179500
Reference: [5] S. S.  Dragomir and S.  Wang: A new inequality of Ostrowski’s type in $L_1$-norm and applications to some special means and to some numerical quadrature rules.Thamkang J. Math. 28 (1997), 239–244. MR 1486792
Reference: [6] S. S.  Dragomir and S.  Wang: A new inequality of Ostrowski’s type in $L_p$-norm and applications to some special means and to some numerical quadrature rules.Thamkang J.  Math (to appear). MR 1486792
Reference: [7] M.  Matić and J.  Pečarić and N.  Ujević: On new estimation of the remainder in generalized Taylor’s formula.Math. Inequal. Appl. 2 (1999), 343–361.
Reference: [8] S. S.  Dragomir and R. P.  Agarwal: The inequalities for differential mappings and applications to special means of real numbers and to trapezoidal formula.Appl. Math. Lett. 11 (1998), 91–95. MR 1638774, 10.1016/S0893-9659(98)00086-X
Reference: [9] C. E. M.  Pearce and J.  Pečarić: Inequalities for differential mappings with applications to special means and quadrature formulas.Appl. Math. Lett 13 (2000), 51–55. MR 1751523, 10.1016/S0893-9659(99)00164-0
Reference: [10] : Handbook of mathematical functions with formulae, graphs and mathematical tables. National Bureau of Standards, Applied Math. Series  55, 4th printing.M.  Abramowitz, I. A.  Stegun (eds.), Washington, 1965. MR 0177136
.

Files

Files Size Format View
CzechMathJ_53-2003-1_14.pdf 353.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo