Previous |  Up |  Next

Article

Title: The basis number of some special non-planar graphs (English)
Author: Alsardary, Salar Y.
Author: Ali, Ali A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 225-240
Summary lang: English
.
Category: math
.
Summary: The basis number of a graph $G$ was defined by Schmeichel to be the least integer $h$ such that $G$ has an $h$-fold basis for its cycle space. He proved that for $m,n\ge 5$, the basis number $b(K_{m,n})$ of the complete bipartite graph $K_{m,n}$ is equal to 4 except for $K_{6,10}$, $K_{5,n}$ and $K_{6,n}$ with $n=5,6,7,8$. We determine the basis number of some particular non-planar graphs such as $K_{5,n}$ and $K_{6,n}$, $n=5,6,7,8$, and $r$-cages for $r=5,6,7,8$, and the Robertson graph. (English)
Keyword: graphs
Keyword: basis number
Keyword: cycle space
Keyword: basis
MSC: 05C35
MSC: 05C38
idZBL: Zbl 1021.05053
idMR: MR1983447
.
Date available: 2009-09-24T11:00:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127795
.
Reference: [1] A. A.  Ali and S. Y.  Alsardary: On the basis number of a graph.Dirasat (Science) 14 (1987), 43–51.
Reference: [2] J. A.  Banks and E. F.  Schmeichel: The basis number of the $n$-cube.J.  Combin Theory, Ser.  B 33 (1982), 95–100. MR 0685059, 10.1016/0095-8956(82)90061-2
Reference: [3] J. A.  Bondy and S. R.  Murty: Graph Theory with Applications.Amer. Elsevier, New York, 1976. MR 0411988
Reference: [4] F.  Harary: Graph Theory.2nd ed., Addison-Wesely, Reading, Massachusetts, 1971.
Reference: [5] S.  MacLane: A combinatorial condition for planar graphs.Fund. Math. 28 (1937), 22–32. Zbl 0015.37501
Reference: [6] N.  Robertson: The smallest graph of girth  5 and valency  4.Bull. Amer. Math. Soc. 30 (1981), 824–825. MR 0167974
Reference: [7] E. F.  Schmeichel: The basis number of a graph.J.  Combin. Theory, Ser.  B 30 (1981), 123–129. Zbl 0385.05031, MR 0615307, 10.1016/0095-8956(81)90057-5
Reference: [8] W. T.  Tutte: Connectivity in Graphs.Univ. Toronto press, Toronto, 1966. Zbl 0146.45603, MR 0210617
.

Files

Files Size Format View
CzechMathJ_53-2003-2_1.pdf 395.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo