Previous |  Up |  Next

Article

Title: Domination in bipartite graphs and in their complements (English)
Author: Zelinka, Bohdan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 241-247
Summary lang: English
.
Category: math
.
Summary: The domatic numbers of a graph $G$ and of its complement $\bar{G}$ were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones: Characterize bipartite graphs $G$ having $d(G) = d(\bar{G})$. Further, we will present a partial solution to the problem: Is it true that if $G$ is a graph satisfying $d(G) = d(\bar{G})$, then $\gamma (G) = \gamma (\bar{G})$? Finally, we prove an existence theorem concerning the total domatic number of a graph and of its complement. (English)
Keyword: bipartite graph
Keyword: complement of a graph
Keyword: domatic number
MSC: 05C69
idZBL: Zbl 1021.05074
idMR: MR1983448
.
Date available: 2009-09-24T11:01:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127796
.
Reference: [1] E. J. Cockayne and S. T.  Hedetniemi: Towards the theory of domination in graphs.Networks 7 (1977), 247–261. MR 0483788, 10.1002/net.3230070305
Reference: [2] E. J. Cockayne, R. M.  Dawes and S. T. Hedetniemi: Total domination in graphs.Networks 10 (1980), 211–219. MR 0584887, 10.1002/net.3230100304
Reference: [3] J. E. Dunbar, T. W.  Haynes and M. A.  Henning: The domatic number of a graph and its complement.Congr. Numer. 8126 (1997), 53–63. MR 1604974
.

Files

Files Size Format View
CzechMathJ_53-2003-2_2.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo