Previous |  Up |  Next

Article

Title: Recovery of band-limited functions on locally compact Abelian groups from irregular samples (English)
Author: Feichtinger, H. G.
Author: Pandey, S. S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 249-264
Summary lang: English
.
Category: math
.
Summary: Using the techniques of approximation and factorization of convolution operators we study the problem of irregular sampling of band-limited functions on a locally compact Abelian group $G$. The results of this paper relate to earlier work by Feichtinger and Gröchenig in a similar way as Kluvánek’s work published in 1969 relates to the classical Shannon Sampling Theorem. Generally speaking we claim that reconstruction is possible as long as there is sufficient high sampling density. Moreover, the iterative reconstruction algorithms apply simultaneously to families of Banach spaces. (English)
Keyword: irregular sampling
Keyword: band-limited functions
Keyword: locally compact Abelian group
Keyword: solid Banach spaces
MSC: 22B99
MSC: 42C15
MSC: 43A15
MSC: 43A25
MSC: 47B38
MSC: 62D05
MSC: 94A12
MSC: 94A20
idZBL: Zbl 1021.43001
idMR: MR1983449
.
Date available: 2009-09-24T11:01:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127797
.
Reference: [1] A. Faridani: A generalized sampling theorem for locally compact Abelian groups.Mathh. Comp. 63 (1994), 307–327. Zbl 0808.65144, MR 1240658, 10.1090/S0025-5718-1994-1240658-6
Reference: [2] H. G. Feichtinger: Gewichtsfunktionen auf lokalkompakten Gruppen, Sitzgsber.Österr. Akad. Wiss. 188 (1979), 451–471. MR 0599884
Reference: [3] H. G. Feichtinger: Banach convolution algebras of Wiener type.In: Proc. Conf. on Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. János Bolyai Vol. 35, North-Holland, Amsterdam, 1983, pp. 509–524. MR 0751019
Reference: [4] H. G. Feichtinger: Characterization of minimal homogeneous Banach spaces.Proc. Amer. Math. Soc. 81 (1981), 55–61. Zbl 0465.43002, MR 0589135, 10.1090/S0002-9939-1981-0589135-9
Reference: [5] H. G. Feichtinger: Generalized amalgams, with applications to Fourier transform.Canad. J. Math. XLII (1990), 395–409. Zbl 0733.46014, MR 1062738
Reference: [6] H. G. Feichtinger: New results on regular and irregular sampling based on Wiener amalgams.In: Proc. Conf. Function spaces, Vol.  136 of Lect. Notes in Math., K. Jarosz (ed.), M. Dekker, 1990, 1991, pp. 107–122. MR 1152342
Reference: [7] H. G. Feichtinger and K. Gröchenig: Irregular sampling theorems and series expansions of band-limited functions.J. Math. Anal. Appl. 167 (1992), 530–556. MR 1168605, 10.1016/0022-247X(92)90223-Z
Reference: [8] H. G. Feichtinger and K.  Gröchenig: Error analysis in regular and irregular sampling theory.Appl. Anal. 50 (1993), 167–189. MR 1278324, 10.1080/00036819308840192
Reference: [9] H. G. Feichtinger and T. Werther: Improved locality for irregular sampling algorithms.In: Proc. ICASSP  1999, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, June 1999.
Reference: [10] H. G. Feichtinger and S. S. Pandey: Error estimates for irregular sampling of band-limited distribution on a locally compact Abelian group.J. Math. Anal. Appl. (2003) (to appear). MR 1974032
Reference: [11] C. Heil: An introduction to weighted Wiener amalgams.In: Proc. Int. Conf. on Wavelets and their Applications (Chennai, January 2002), R. Ramakrishnan and S. Thangavelu (eds.), Allied Publishers, New Delhi.
Reference: [12] I. Kluvánek: Sampling theorem in abstract harmonic analysis.Mat. Časopis Slov. Akad. Vied 15 (1969), 43–48.
Reference: [13] H. Reiter and J. Stegeman: Classical Harmonic Analysis and Locally Compact Groups, 2nd Ed., London Mathematical Society Monographs. New Series. 22.Clarendon Press, Oxford, 2000. MR 1802924
Reference: [14] T. Werther: Reconstruction from irregular samples with improved locality.Master Thesis, Vienna, 1999.
.

Files

Files Size Format View
CzechMathJ_53-2003-2_3.pdf 392.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo