Previous |  Up |  Next

Article

Title: Modules with the direct summand sum property (English)
Author: Vălcan, Dumitru
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 277-287
Summary lang: English
.
Category: math
.
Summary: The present work gives some characterizations of $R$-modules with the direct summand sum property (in short DSSP), that is of those $R$-modules for which the sum of any two direct summands, so the submodule generated by their union, is a direct summand, too. General results and results concerning certain classes of $R$-modules (injective or projective) with this property, over several rings, are presented. (English)
Keyword: modules
Keyword: direct summands
Keyword: sum property
Keyword: Artinian rings
MSC: 16D10
MSC: 16D40
MSC: 16D50
MSC: 16D60
MSC: 16D70
idZBL: Zbl 1027.16005
idMR: MR1983451
.
Date available: 2009-09-24T11:01:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127799
.
Reference: [1] F. W. Anderson and K. R.  Fuller: Rings and Categories of Modules.Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0417223
Reference: [2] D. M. Arnold and J. Hausen: A characterization of modules with the summand intersection property.Comm. Algebra 18 (1990), 519–528. MR 1047325, 10.1080/00927879008823929
Reference: [3] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Math. 49.Springer-Verlag, Berlin-Heidelberg-New York, 1967. MR 0227206
Reference: [4] L.  Fuchs: Infinite Abelian Groups, vol. I–II. Pure Appl. Math. 36.Academic Press, 1970–1973. MR 0255673
Reference: [5] J. Hausen: Modules with the summand intersection property.Comm. Algebra 17 (1989), 135–148. Zbl 0667.16020, MR 0970868, 10.1080/00927878908823718
Reference: [6] I.  Kaplansky: Infinite Abelian Groups.Univ. of Michigan Press, Ann Arbor, Michigan, 1954, 1969. MR 0233887
Reference: [7] I. Purdea and G. Pic: Treatise of Modern Algebra, vol. I.Editura Academiei R.S.R., Bucureşti, 1977. (Romanian) MR 0490621
Reference: [8] I.  Purdea: Treatise of Modern Algebra, vol. II.Editura Academiei R.S.R., Bucureşti, 1982. (Romanian) MR 0682923
Reference: [9] J. J. Rotman: Notes on Homological Algebra.Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, 1970. MR 0409590
Reference: [10] D. W. Sharpe and P.  Vámos: Injective Modules.Cambridge University Press, 1972. MR 0360706
Reference: [11] D.  Vălcan: Injective modules with the direct summand intersection property.Sci. Bull. of Moldavian Academy of Sciences, Seria Mathematica 31 (1999), 39–50. MR 1792906
Reference: [12] G. V.  Wilson: Modules with the summand intersection property.Comm. Algebra 14 (1986), 21–38. Zbl 0592.13008, MR 0814137, 10.1080/00927878608823297
Reference: [13] X. H. Zheng: Characterizations of Noetherian and hereditary rings.Proc. Amer. Math. Soc. 93 (1985), 414–416. Zbl 0571.16010, MR 0773992, 10.1090/S0002-9939-1985-0773992-0
.

Files

Files Size Format View
CzechMathJ_53-2003-2_5.pdf 320.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo