Previous |  Up |  Next

Article

Title: Equivalence bimodule between non-commutative tori (English)
Author: Oh, Sei-Qwon
Author: Park, Chun-Gil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 289-294
Summary lang: English
.
Category: math
.
Summary: The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule. (English)
Keyword: Morita equivalent
Keyword: twisted group $C^*$-algebra
Keyword: crossed product
MSC: 46L05
MSC: 46L87
MSC: 46L89
MSC: 55R15
idZBL: Zbl 1028.46102
idMR: MR1983452
.
Date available: 2009-09-24T11:01:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127800
.
Reference: [1] L.  Baggett and A.  Kleppner: Multiplier representations of abelian groups.J.  Funct. Anal. 14 (1973), 299–324. MR 0364537, 10.1016/0022-1236(73)90075-X
Reference: [2] M.  Brabanter: The classification of rational rotation $C^*$-algebras.Arch. Math. 43 (1984), 79–83. MR 0758343, 10.1007/BF01193614
Reference: [3] L.  Brown, P.  Green and M.  Rieffel: Stable isomorphism and strong Morita equivalence of $C^*$-algebras.Pacific J.  Math. 71 (1977), 349–363. MR 0463928, 10.2140/pjm.1977.71.349
Reference: [4] S.  Disney and I.  Raeburn: Homogeneous $C^*$-algebras whose spectra are tori.J.  Austral. Math. Soc. (Series A) 38 (1985), 9–39. MR 0765447, 10.1017/S1446788700022576
Reference: [5] R. S.  Doran and J. M. G.  Fell: Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles.Academic Press, San Diego, 1988.
Reference: [6] G. A.  Elliott: On the $K$-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group.In: Operator Algebras and Group Representations, Vol.  1, Pitman, London, 1984, pp. 157–184. Zbl 0542.46030, MR 0731772
Reference: [7] P.  Green: The local structure of twisted covariance algebras.Acta Math. 140 (1978), 191–250. Zbl 0407.46053, MR 0493349, 10.1007/BF02392308
Reference: [8] D. Poguntke: Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups.Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. Zbl 0523.22007, MR 0719767, 10.24033/asens.1444
Reference: [9] D.  Poguntke: The structure of twisted convolution $C^*$-algebras on abelian groups.J.  Operator Theory 38 (1997), 3–18. Zbl 0924.46046, MR 1462012
Reference: [10] M. Rieffel: Morita equivalence for operator algebras.Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V.  Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. Zbl 0541.46044, MR 0679708
.

Files

Files Size Format View
CzechMathJ_53-2003-2_6.pdf 327.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo