Title:
|
Equivalence bimodule between non-commutative tori (English) |
Author:
|
Oh, Sei-Qwon |
Author:
|
Park, Chun-Gil |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
289-294 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule. (English) |
Keyword:
|
Morita equivalent |
Keyword:
|
twisted group $C^*$-algebra |
Keyword:
|
crossed product |
MSC:
|
46L05 |
MSC:
|
46L87 |
MSC:
|
46L89 |
MSC:
|
55R15 |
idZBL:
|
Zbl 1028.46102 |
idMR:
|
MR1983452 |
. |
Date available:
|
2009-09-24T11:01:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127800 |
. |
Reference:
|
[1] L. Baggett and A. Kleppner: Multiplier representations of abelian groups.J. Funct. Anal. 14 (1973), 299–324. MR 0364537, 10.1016/0022-1236(73)90075-X |
Reference:
|
[2] M. Brabanter: The classification of rational rotation $C^*$-algebras.Arch. Math. 43 (1984), 79–83. MR 0758343, 10.1007/BF01193614 |
Reference:
|
[3] L. Brown, P. Green and M. Rieffel: Stable isomorphism and strong Morita equivalence of $C^*$-algebras.Pacific J. Math. 71 (1977), 349–363. MR 0463928, 10.2140/pjm.1977.71.349 |
Reference:
|
[4] S. Disney and I. Raeburn: Homogeneous $C^*$-algebras whose spectra are tori.J. Austral. Math. Soc. (Series A) 38 (1985), 9–39. MR 0765447, 10.1017/S1446788700022576 |
Reference:
|
[5] R. S. Doran and J. M. G. Fell: Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles.Academic Press, San Diego, 1988. |
Reference:
|
[6] G. A. Elliott: On the $K$-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group.In: Operator Algebras and Group Representations, Vol. 1, Pitman, London, 1984, pp. 157–184. Zbl 0542.46030, MR 0731772 |
Reference:
|
[7] P. Green: The local structure of twisted covariance algebras.Acta Math. 140 (1978), 191–250. Zbl 0407.46053, MR 0493349, 10.1007/BF02392308 |
Reference:
|
[8] D. Poguntke: Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups.Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. Zbl 0523.22007, MR 0719767, 10.24033/asens.1444 |
Reference:
|
[9] D. Poguntke: The structure of twisted convolution $C^*$-algebras on abelian groups.J. Operator Theory 38 (1997), 3–18. Zbl 0924.46046, MR 1462012 |
Reference:
|
[10] M. Rieffel: Morita equivalence for operator algebras.Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V. Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. Zbl 0541.46044, MR 0679708 |
. |