Previous |  Up |  Next

Article

Title: On free $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 311-317
Summary lang: English
.
Category: math
.
Summary: In the present paper we show that free $MV$-algebras can be constructed by applying free abelian lattice ordered groups. (English)
Keyword: $MV$-algebra
Keyword: abelian lattice ordered group
Keyword: free generators
MSC: 03G20
MSC: 06D35
MSC: 06F20
idZBL: Zbl 1024.06004
idMR: MR1983454
.
Date available: 2009-09-24T11:01:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127802
.
Reference: [1] G. Birkhoff: Lattice Theory., Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] R.  Cignoli, I M. I.  d’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Trends in Logic, Studia logica library Vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] P.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [4] D.  Gluschankof: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math.  J. 43 (1993), 249–263. Zbl 0795.06015, MR 1211747
Reference: [5] J.  Jakubík: Direct product decompositions of $MV$-algebras.Czechoslovak Math.  J. 44 (1994), 725–739.
Reference: [6] R.  McNaughton: A theorem about infinite valued sentential logic.J.  Symbolic Logic 16 (1951), 1–13. Zbl 0043.00901, MR 0041799, 10.2307/2268660
Reference: [7] D.  Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [8] E. C.  Weinberg: Free lattice ordered abelian groups.Math. Ann. 151 (1963), 187–199. Zbl 0114.25801, MR 0153759, 10.1007/BF01398232
Reference: [9] E. C.  Weinberg: Free lattice ordered abelian groups,  II.Math. Ann. 159 (1965), 217–222. Zbl 0138.26201, MR 0181668, 10.1007/BF01362439
.

Files

Files Size Format View
CzechMathJ_53-2003-2_8.pdf 277.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo