Previous |  Up |  Next

Article

Title: Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem (English)
Author: Ball, Richard N.
Author: Hagler, James N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 319-342
Summary lang: English
.
Category: math
.
Summary: We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid. (English)
Keyword: flow
Keyword: Stone-Čech compactification
Keyword: Hindman’s theorem
MSC: 11B75
MSC: 37B05
MSC: 37B20
MSC: 54C60
MSC: 54H20
idZBL: Zbl 1026.54043
idMR: MR1983455
.
Date available: 2009-09-24T11:02:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127803
.
Reference: [1] R. N. Ball and J. N.  Hagler: Actions on archimedean lattice-ordered groups with strong unit.Ordered Algebraic Structures, W. C.  Holland, J.  Martinez (eds.), Kluwer Academic Publishers, 1997, pp. 81–121. MR 1445109
Reference: [2] R. N. Ball and J. N.  Hagler: The Gleason cover of a flow.General Topology and Applications. Tenth Summer Conference at Amsterdam, E. Coplakova, K. P.  Hart (eds.), Annals of the New York Academy of Sciences, Vol.788, 1996. MR 1460813
Reference: [3] R. N.  Ball and J. N.  Hagler: Real valued functions on flows.In preparation.
Reference: [4] A. Blass: Ultrafilters: where topological dynamics = algebra = combinatorics.Topology Proceedings, Vol. 18 (1993), 33–56. Zbl 0856.54042, MR 1305122
Reference: [5] W. W.  Comfort: Ultrafilters—some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417–455. MR 0454893, 10.1090/S0002-9904-1977-14316-4
Reference: [6] L. Gillman and M.  Jerison: Rings of Continuous Functions.Van Nostrand, 1960. MR 0116199
Reference: [7] R. L. Graham, B. L. Rothschild and J. H. Spencer: Ramsey Theory.Wiley, 1980. MR 0591457
Reference: [8] H.  Herrlich and G. E. Strecker: Category Theory.Allyn and Bacon, Boston, 1973. MR 0349791
Reference: [9] N.  Hindman: Finite sums from sequences within cells of a partition of  $N$.J.  Combin. Theory  (A), 17 (1974), 1–11. Zbl 0285.05012, MR 0349574, 10.1016/0097-3165(74)90023-5
Reference: [10] N.  Hindman: Ultrafilters and combinatorial number theory. Number Theory Carbondale 1979.Lecture Notes in Mathematics 751, M.  Nathanson (ed.), Springer Verlag, 1979, pp. 119–184. MR 0564927
Reference: [11] M. Megrelishvili: A Tychonoff $G$-space which has no compact $G$-extensions and $G$-linearizations.Russian Math. Surveys 43 (1998), 145–6.
Reference: [12] K.  Namakura: On bicompact semgroups.Math. J.  Okayama University 1 (1952), 99–108. MR 0048467
Reference: [13] J. de Vries: Topological Transformation Groups. (A Categorical Approach).Mathematical Centre Tracts 65, Amsterdam, 1975.
Reference: [14] J. de Vries: Elements of Topological Dynamics, Mathematics and Its Applications Vol. 257.Kluwer Academic Publishing, Dordrecht, 1993. MR 1249063
Reference: [15] J.  de Vries: On the existence of  $G$-compactifications.Bull. Acad. Polonaise des Sciences 26 (1978), 275–280. Zbl 0378.54028, MR 0644661
.

Files

Files Size Format View
CzechMathJ_53-2003-2_9.pdf 429.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo