[3] J. M. Ansemil and S. Ponte:
Topologies associated with the compact open topology on ${\mathcal H}(U)$. Proc. R. Ir. Acad. 82A (1982), 121–129.
MR 0669471
[5] P. Aviles and J. Mujica:
Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces. Rend. Math. 6 (1977), 117–127.
MR 0458170
[6] K.-D. Bierstedt:
An introduction to locally convex inductive limits. Functional Analysis and its Applications, World Scientific, 1988, pp. 35–132.
MR 0979516 |
Zbl 0786.46001
[7] K.-D. Bierstedt and J. Bonet:
Biduality in Fréchet and (LB)-spaces. Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 113–133.
MR 1150741
[8] K.-D. Bierstedt and J. Bonet:
Density condition in Fréchet and (DF)-spaces. Rev. Matem. Univ. Complut. Madrid 2 (1989), 59–76.
MR 1057209
[9] K.-D. Bierstedt, J. Bonet and A. Peris: Vector-valued holomorphic germs on Fréchet Schwartz spaces. Proc. Royal Ir. Acad. 94A (1994), 3–46.
[10] K.-D. Bierstedt and R. Meise:
Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to study of $({\mathcal H}(U),\tau _\omega )$. Advances in Holomorphy (J. A. Barroso, ed.). North-Holland Math. Studies 33 (1979), 111–178.
DOI 10.1016/S0304-0208(08)70757-6 |
MR 0520658
[11] J. Bonet:
A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull. 33 (1991), 301–314.
MR 1127750 |
Zbl 0698.46002
[12] J. Bonet, P. Domański and J. Mujica:
Completeness of spaces of vector-valued holomorphic germs. Math. Scand. 75 (1995), 250–260.
MR 1308945
[13] C. Boyd: Preduals of the space of holomorphic functions on a Fréchet space. Ph.D. Thesis, National University of Ireland (1992).
[14] C. Boyd:
Distinguished preduals of the space of holomorphic functions. Rev. Mat. Univ. Complut. Madrid 6 (1993), 221–232.
MR 1269753
[16] C. Boyd:
Some topological properties of preduals of spaces of holomorphic functions. Proc. Royal Ir. Acad. 94A (1994), 167–178.
MR 1369030 |
Zbl 0852.46037
[18] J. F. Colombeau and D. Lazet:
Sur les théoremes de Vitali et de Montel en dimension infinie. C.R.A.Sc., Paris 274 (1972), 185–187.
MR 0295022
[20] A. Defant and W. Govaerts:
Tensor products and spaces of vector-valued continuous functions. Manuscripta Math. 55 (1986), 432–449.
MR 0836875
[21] S. Dineen:
Complex Analysis on Locally Convex Spaces. North-Holland Math. Studies, Vol. 57, 1981.
MR 0640093
[23] K. G. Große-Erdmann: The Borel-Okada theorem revisited. Habilitation Schrift, 1992.
[25] J. Horváth:
Topological Vector Spaces and Distributions, Vol. 1. Addison-Wesley, Massachusetts, 1966.
MR 0205028
[29] J. Mujica and L. Nachbin:
Linearization of holomorphic mappings on locally convex spaces. J. Math. Pures Appl. 71 (1992), 543–560.
MR 1193608
[30] L. Nachbin: Weak holomorphy. Unpublished manuscript.
[31] P. Pérez Carreras and J. Bonet:
Barrelled Locally Convex Spaces. North Holland Math. Studies, Vol. 131. North Holland, Amsterdam, 1987.
MR 0880207
[32] A. Peris:
Quasinormable spaces and the problem of topologies of Grothendieck. Ann. Acad. Sci. Fenn. 19 (1994), 167–203.
MR 1246894 |
Zbl 0789.46006
[35] R. A. Ryan: Applications of topological tensor products to infinite dimensional holomorphy. Ph.D. Thesis, Trinity College, Dublin, 1980.
[36] H. H. Schaefer:
Topological Vector Spaces. Third Printing corrected, Springer-Verlag, 1971.
MR 0342978 |
Zbl 0217.16002
[37] J. Schmets:
Espaces de fonctions continues. Lecture Notes in Math., Vol. 519, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
MR 0423058 |
Zbl 0334.46022