[1] T. S.  Angell, R. E.  Kleinman and J.  Král: 
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. 
MR 0981880[3] N.  Boboc, C.  Constantinescu and A.  Cornea: 
On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math.  J. 23 (1963), 73–96. 
MR 0162957[4] M.  Brelot: 
Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961. 
MR 0106366[5] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
[6] E.  De Giorgi: 
Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$  dimensioni. Ricerche Mat. 4 (1955), 95–113. 
MR 0074499[7] E. B.  Fabes, M.  Jodeit and N. M.  Riviére: 
Potential techniques for boundary value problems in $C^1$  domains. Acta Math. 141 (1978), 165–186. 
DOI 10.1007/BF02545747 | 
MR 0501367[8] N. V.  Grachev and V. G.  Maz’ya: 
On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64. 
MR 0880678[9] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[10] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[11] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.
[13] V.  Kordula, V.  Müller and V.  Rakočević: 
On the semi-Browder spectrum. Studia Math. 123 (1997), 1–13. 
MR 1438302[15] J.  Král: 
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. 
MR 0590244[17] J.  Král: Problème de Neumann faible avec condition frontière dans  $L^1$. Séminaire de Théorie du Potentiel (Université Paris VI) No.  9, Lecture Notes in Mathematics Vol.  1393, Springer-Verlag, 1989, pp. 145–160.
[18] J. Král and W. L.  Wendland: 
Some examples concerning applicability of the Fredholm-Radon method in potential theory. Appl. Math. 31 (1986), 293–308. 
MR 0854323[19] N. L.  Landkof: 
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) 
MR 0214795[20] D.  Medková: 
The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math.  J. 47(122) (1997), 651–679. 
DOI 10.1023/A:1022818618177 | 
MR 1479311[23] I.  Netuka: 
Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. 
MR 0419794 | 
Zbl 0314.31006[24] I.  Netuka: 
Generalized Robin problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 312-324. 
MR 0294673 | 
Zbl 0241.31008[25] I.  Netuka: 
An operator connected with the third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 462–489. 
MR 0316733 | 
Zbl 0241.31009[26] I.  Netuka: 
The third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 554–580. 
MR 0313528 | 
Zbl 0242.31007[27] I.  Netuka: 
Continuity and maximum principle for potentials of signed measures. Czechoslovak Math.  J. 25(100) (1975), 309–316. 
MR 0382690 | 
Zbl 0309.31019[28] A.  Rathsfeld: 
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177. 
DOI 10.1080/00036819208840093 | 
MR 1293594[30] Ch. G.  Simader: 
The weak Dirichlet and Neumann problem for the Laplacian in  $L^q$ for bounded and exterior domains. Applications. Nonlinear analysis, function spaces and applications, Vol.  4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math.  119, 1990, pp. 180–223. 
MR 1151436[31] Ch. G.  Simader and H.  Sohr: 
The Dirichlet problem for the Laplacian in bounded and unbounded domains. Pitman Research Notes in Mathematics Series  360, Addison Wesley Longman Inc., 1996. 
MR 1454361[32] M.  Schechter: 
Principles of Functional Analysis. Academic Press, 1973. 
MR 0445263