Title:
|
Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential (English) |
Author:
|
Žubrinić, Darko |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
429-435 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of $p$-Laplacian type. If $p<\gamma <N$ and the right-hand side is a Radon measure with singularity of order $\gamma $ at $x_0\in \Omega $, then any supersolution in $W_{\mathrm loc}^{1,p}(\Omega )$ has singularity of order at least $\frac{(\gamma -p)}{(p-1)}$ at $x_0$. In the proof we exploit a pointwise estimate of $\mathcal A$-superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure. (English) |
Keyword:
|
quasilinear elliptic |
Keyword:
|
singularity |
Keyword:
|
Sobolev function |
MSC:
|
31B05 |
MSC:
|
35A20 |
MSC:
|
35B05 |
MSC:
|
35J60 |
idZBL:
|
Zbl 1022.31005 |
idMR:
|
MR1983463 |
. |
Date available:
|
2009-09-24T11:03:01Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127811 |
. |
Reference:
|
[1] G. Díaz and R. Leletier: Explosive solutions of quasilinear elliptic equations: existence and uniqueness.Nonlinear Anal. 20 (1993), 97–125. MR 1200384, 10.1016/0362-546X(93)90012-H |
Reference:
|
[2] M. Giaquinta: Multiple Integrals in the Calculus of Variations and Elliptic Systems.Princeton University Press, Princeton, New Jersey, 1983. MR 0717034 |
Reference:
|
[3] M. Grillot: Prescribed singular submanifolds of some quasilinear elliptic equations.Nonlinear Anal. 34 (1998), 839–856. Zbl 0947.35059, MR 1636596, 10.1016/S0362-546X(97)00570-1 |
Reference:
|
[4] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press, Oxford, 1993. MR 1207810 |
Reference:
|
[5] T. Kilpeläinen: Singular solutions to $p$-Laplacian type equations.Ark. Mat. 37 (1999), 275–289. MR 1714768, 10.1007/BF02412215 |
Reference:
|
[6] T. Kilpeläinen and J. Malý: Degenerate elliptic equations with measure data and nonlinear potentials.Ann. Scuola Norm. Sup. Pisa 19 (1992), 591–613. MR 1205885 |
Reference:
|
[7] L. Korkut, M. Pašić and D. Žubrinić: Control of essential infimum and supremum of solutions of quasilinear elliptic equations.C. R. Acad. Sci. Paris t. 329, Série I (1999), 269–274. MR 1713330, 10.1016/S0764-4442(00)88565-1 |
Reference:
|
[8] L. Korkut, M. Pašić and D. Žubrinić: Some qualitative properties of solutions of quasilinear elliptic equations and applications.J. Differential Equations 170 (2001), 247–280. MR 1815184, 10.1006/jdeq.2000.3821 |
Reference:
|
[9] J. Leray and J.-L. Lions: Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder.Bull. Soc. Math. France 93 (1965), 97–107. MR 0194733, 10.24033/bsmf.1617 |
Reference:
|
[10] L. Mou: Removability of singular sets of harmonic maps.Arch. Rational Mech. Anal. 127 (1994), 199–217. Zbl 1026.58017, MR 1288601 |
Reference:
|
[11] L. Simon: Singularities of Geometric Variational Problems. IAS/Park City Math. Ser. Vol. 2.1992, pp. 183–219. MR 1369589 |
Reference:
|
[12] D. Žubrinić: Generating singularities of solutions of quasilinear elliptic equations.J. Math. Anal. Appl. 244 (2000), 10–16. MR 1746784, 10.1006/jmaa.1999.6680 |
. |