Previous |  Up |  Next

Article

Title: Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential (English)
Author: Žubrinić, Darko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 429-435
Summary lang: English
.
Category: math
.
Summary: We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of $p$-Laplacian type. If $p<\gamma <N$ and the right-hand side is a Radon measure with singularity of order $\gamma $ at $x_0\in \Omega $, then any supersolution in $W_{\mathrm loc}^{1,p}(\Omega )$ has singularity of order at least $\frac{(\gamma -p)}{(p-1)}$ at $x_0$. In the proof we exploit a pointwise estimate of $\mathcal A$-superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure. (English)
Keyword: quasilinear elliptic
Keyword: singularity
Keyword: Sobolev function
MSC: 31B05
MSC: 35A20
MSC: 35B05
MSC: 35J60
idZBL: Zbl 1022.31005
idMR: MR1983463
.
Date available: 2009-09-24T11:03:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127811
.
Reference: [1] G.  Díaz and R. Leletier: Explosive solutions of quasilinear elliptic equations: existence and uniqueness.Nonlinear Anal. 20 (1993), 97–125. MR 1200384, 10.1016/0362-546X(93)90012-H
Reference: [2] M.  Giaquinta: Multiple Integrals in the Calculus of Variations and Elliptic Systems.Princeton University Press, Princeton, New Jersey, 1983. MR 0717034
Reference: [3] M. Grillot: Prescribed singular submanifolds of some quasilinear elliptic equations.Nonlinear Anal. 34 (1998), 839–856. Zbl 0947.35059, MR 1636596, 10.1016/S0362-546X(97)00570-1
Reference: [4] J. Heinonen, T.  Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press, Oxford, 1993. MR 1207810
Reference: [5] T. Kilpeläinen: Singular solutions to $p$-Laplacian type equations.Ark. Mat. 37 (1999), 275–289. MR 1714768, 10.1007/BF02412215
Reference: [6] T. Kilpeläinen and J. Malý: Degenerate elliptic equations with measure data and nonlinear potentials.Ann. Scuola Norm. Sup. Pisa 19 (1992), 591–613. MR 1205885
Reference: [7] L.  Korkut, M. Pašić and D. Žubrinić: Control of essential infimum and supremum of solutions of quasilinear elliptic equations.C.  R.  Acad. Sci. Paris t. 329, Série  I (1999), 269–274. MR 1713330, 10.1016/S0764-4442(00)88565-1
Reference: [8] L.  Korkut, M. Pašić and D. Žubrinić: Some qualitative properties of solutions of quasilinear elliptic equations and applications.J.  Differential Equations 170 (2001), 247–280. MR 1815184, 10.1006/jdeq.2000.3821
Reference: [9] J.  Leray and J.-L. Lions: Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder.Bull. Soc. Math. France 93 (1965), 97–107. MR 0194733, 10.24033/bsmf.1617
Reference: [10] L.  Mou: Removability of singular sets of harmonic maps.Arch. Rational Mech. Anal. 127 (1994), 199–217. Zbl 1026.58017, MR 1288601
Reference: [11] L.  Simon: Singularities of Geometric Variational Problems. IAS/Park City Math. Ser. Vol. 2.1992, pp. 183–219. MR 1369589
Reference: [12] D.  Žubrinić: Generating singularities of solutions of quasilinear elliptic equations.J.  Math. Anal. Appl. 244 (2000), 10–16. MR 1746784, 10.1006/jmaa.1999.6680
.

Files

Files Size Format View
CzechMathJ_53-2003-2_17.pdf 333.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo