Previous |  Up |  Next

Article

Title: A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras (English)
Author: de Simone, A.
Author: Mundici, D.
Author: Navara, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 437-447
Summary lang: English
.
Category: math
.
Summary: The Cantor-Bernstein theorem was extended to $\sigma $-complete boolean algebras by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to $\sigma $-complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras. (English)
Keyword: Cantor-Bernstein theorem
Keyword: MV-algebra
Keyword: boolean element of an MV-algebra
Keyword: partition of unity
Keyword: direct product decomposition
Keyword: $\sigma $-complete MV-algebra
MSC: 03G20
MSC: 06C15
MSC: 06D30
MSC: 06D35
idZBL: Zbl 1024.06003
idMR: MR1983464
.
Date available: 2009-09-24T11:03:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127812
.
Reference: [1] R.  Cignoli and D. Mundici: An invitation to Chang’s MV-algebras.In: Advances in Algebra and Model Theory, M.  Droste, R. Göbel (eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197. MR 1683528
Reference: [2] R.  Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol.  7.Kluwer Academic Publishers, Dordrecht, 1999. MR 1786097
Reference: [3] W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras.Math. Scand. 5 (1957), 205–217. Zbl 0081.26101, MR 0108451, 10.7146/math.scand.a-10496
Reference: [4] J. Jakubík: Cantor-Bernstein theorem for $MV$-algebras.Czechoslovak Math. J. 49(124) (1999), 517–526. MR 1708370, 10.1023/A:1022467218309
Reference: [5] S.  Kinoshita: A solution to a problem of Sikorski.Fund. Math. 40 (1953), 39–41. MR 0060809, 10.4064/fm-40-1-39-41
Reference: [6] A.  Levy: Basic Set Theory. Perspectives in Mathematical Logic.Springer-Verlag, Berlin, 1979. MR 0533962
Reference: [7] D.  Mundici: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus.J.  Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [8] R.  Sikorski: Boolean Algebras.Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960. Zbl 0087.02503, MR 0126393
Reference: [9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140–144 and 242. MR 0027264, 10.4064/cm-1-2-140-144
Reference: [10] A.  Tarski: Cardinal Algebras.Oxford University Press, New York, 1949. Zbl 0041.34502, MR 0029954
.

Files

Files Size Format View
CzechMathJ_53-2003-2_18.pdf 335.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo