| Title:
             | 
On the normality of an almost contact $3$-structure on $QR$-submanifolds (English) | 
| Author:
             | 
Funabashi, S. | 
| Author:
             | 
Pak, J. S. | 
| Author:
             | 
Shin, Y. J. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
53 | 
| Issue:
             | 
3 | 
| Year:
             | 
2003 | 
| Pages:
             | 
571-589 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^{(n+p)/4}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure. (English) | 
| Keyword:
             | 
quaternionic projective space | 
| Keyword:
             | 
quaternionic number space | 
| Keyword:
             | 
$QR$-submanifold | 
| Keyword:
             | 
normal almost contact $3$-structure | 
| MSC:
             | 
53C40 | 
| MSC:
             | 
53D15 | 
| idZBL:
             | 
Zbl 1080.53050 | 
| idMR:
             | 
MR2000054 | 
| . | 
| Date available:
             | 
2009-09-24T11:04:36Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127824 | 
| . | 
| Reference:
             | 
[1] M.  Barros, B. Y.  Chen and F.  Urbano: Quaternion $CR$-submanifolds of a quaternion manifold.Kodai Math.  J. 4 (1981), 399–418. MR 0641361 | 
| Reference:
             | 
[2] A.  Bejancu: Geometry of $CR$-submanifolds.D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986. Zbl 0605.53001, MR 0861408 | 
| Reference:
             | 
[3] B. Y.  Chen: Geometry of Submanifolds.Marcel Dekker Inc., New York, 1973. Zbl 0262.53036, MR 0353212 | 
| Reference:
             | 
[4] J.  Erbacher: Reduction of the codimension of anisometric immersion.J.  Differential Geom. 5 (1971), 333–340. MR 0288701, 10.4310/jdg/1214429997 | 
| Reference:
             | 
[5] S.  Ishihara: Quaternion Kaehlerian manifolds.J.  Differential Geom. 9 (1974), 483–500. Zbl 0297.53014, MR 0348687, 10.4310/jdg/1214432544 | 
| Reference:
             | 
[6] S.  Ishihara and M.  Konishi: Differential geometry of fibred spaces.Publication of the Study Group of Geometry, Vol.  8, Institute of Mathematics, Yoshida College, Tokyo, 1973. MR 0405275 | 
| Reference:
             | 
[7] D.  Krupka: The trace decomposition problem.Beiträge Algebra Geom.; Contrib. Alg. Geom. 36 (1995), 303–315. Zbl 0839.15024, MR 1358429 | 
| Reference:
             | 
[8] Y. Y.  Kuo: On almost contact $3$-structure.Tohoku Math.  J. 22 (1970), 235–332. Zbl 0205.25801, MR 0278225 | 
| Reference:
             | 
[9] J.-H.  Kwon and J. S.  Pak: $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic projective space $QP^{(n+p)/4}$.Acta Math. Hungar. 86 (2000), 89–116. MR 1728592, 10.1023/A:1006795518714 | 
| Reference:
             | 
[10] J.-H.  Kwon and J. S.  Pak: Scalar curvature of $QR$-submanifolds immersed in a quaternionic projective space.Saitama Math.  J 17 (1999), 47–57. MR 1740246 | 
| Reference:
             | 
[11] J.-H.  Kwon and J. S.  Pak: On $n$-dimensional $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic space form.Preprint. | 
| Reference:
             | 
[12] M.  Okumura and L.  Vanhecke: A class of normal almost contact $CR$-submanifolds in  $C^q$.Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 359–369. MR 1345606 | 
| Reference:
             | 
[13] J. S.  Pak: Real hypersurfaces in quaternionic Kaehlerian manifolds with constant $Q$-sectional curvature.Kodai Math. Sem. Rep. 29 (1977), 22–61. Zbl 0424.53012, MR 0461384, 10.2996/kmj/1138833571 | 
| Reference:
             | 
[14] K.  Yano, S.  Ishihara and M.  Konishi: Normality of almost contact $3$-structure.Tohoku Math.  J. 25 (1973), 167–175. MR 0336644, 10.2748/tmj/1178241375 | 
| . |