Previous |  Up |  Next

Article

Title: Non-transitive generalizations of subdirect products of linearly ordered rings (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 591-603
Summary lang: English
.
Category: math
.
Summary: Weakly associative lattice rings (wal-rings) are non-transitive generalizations of lattice ordered rings (l-rings). As is known, the class of l-rings which are subdirect products of linearly ordered rings (i.e. the class of f-rings) plays an important role in the theory of l-rings. In the paper, the classes of wal-rings representable as subdirect products of to-rings and ao-rings (both being non-transitive generalizations of the class of f-rings) are characterized and the class of wal-rings having lattice ordered positive cones is described. Moreover, lexicographic products of weakly associative lattice groups are also studied here. (English)
Keyword: weakly associative lattice ring
Keyword: weakly associative lattice group
Keyword: representable wal-ring
MSC: 06F15
MSC: 06F25
MSC: 13J25
MSC: 16W80
idZBL: Zbl 1080.06032
idMR: MR2000055
.
Date available: 2009-09-24T11:04:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127825
.
Reference: [1] A.  Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux réticulés.Springer Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653
Reference: [2] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra.Springer-Verlag, New York-Heidelberg-Berlin, 1981. MR 0648287
Reference: [3] E.  Fried: Tournaments and non-associative lattices.Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151–164. MR 0321837
Reference: [4] L. Fuchs: Partially Ordered Algebraic Systems.Mir, Moscow, 1965. (Russian) MR 0218283
Reference: [5] V. M.  Kopytov: Lattice Ordered Groups.Nauka, Moscow, 1984. (Russian) Zbl 0567.06011, MR 0806956
Reference: [6] V. M. Kopytov, N. Ya.  Medvedev: The Theory of Lattice Ordered Groups.Kluwer Acad. Publ., Dordrecht, 1994. MR 1369091
Reference: [7] A. G.  Kurosch,: Lectures on General Algebra.Academia, Praha, 1977. (Czech)
Reference: [8] J.  Rachůnek: Solid subgroups of weakly associative lattice groups.Acta Univ. Palack. Olom. Fac. Rerum Natur. 105, Math. 31 (1992), 13–24. MR 1212601
Reference: [9] J.  Rachůnek: Circular totally semi-ordered groups.Acta Univ. Palack. Olom. Fac. Rerum Natur. 114, Math. 33 (1994), 109–116. MR 1385751
Reference: [10] J.  Rachůnek: On some varieties of weakly associative lattice groups.Czechoslovak Math. J. 46 (121) (1996), 231–240. MR 1388612
Reference: [11] J.  Rachůnek: A weakly associative generalization of the variety of representable lattice ordered groups.Acta Univ. Palack. Olom. Fac. Rerum Natur., Math. 37 (1998), 107–112. MR 1690479
Reference: [12] J.  Rachůnek: Weakly associative lattice groups with lattice ordered positive cones.In: Contrib. Gen. Alg. 11, Verlag Johannes Heyn, Klagenfurt, 1999, pp. 173–180. MR 1696670
Reference: [13] D.  Šalounová: Weakly associative lattice rings.Acta Math. Inform. Univ. Ostraviensis 8 (2000), 75–87. MR 1800224
Reference: [14] H.  Skala: Trellis theory.Algebra Universalis  1 (1971), 218–233. Zbl 0242.06003, MR 0302523, 10.1007/BF02944982
Reference: [15] H.  Skala: Trellis Theory.Memoirs AMS, Providence, 1972. Zbl 0242.06004, MR 0325474
.

Files

Files Size Format View
CzechMathJ_53-2003-3_8.pdf 360.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo