Previous |  Up |  Next

Article

Title: Projectability and splitting property of lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 907-915
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with the notions of projectability, spliting property and Dedekind completeness of lattice ordered groups, and with the relations between these notions. (English)
Keyword: lattice ordered group
Keyword: projectability
Keyword: splitting property
Keyword: Dedekind completeness
MSC: 06F15
MSC: 20F60
idZBL: Zbl 1080.06026
idMR: MR2018838
.
Date available: 2009-09-24T11:07:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127848
.
Reference: [1] M. Anderson, P. Conrad and O. Kenney: Splitting properties in archimedean $\ell $-groups.J. Austral. Math. Soc. 23 (1977), 247–256. MR 0460207, 10.1017/S1446788700018231
Reference: [2] S. J. Bernau: Lateral and Dedekind completion of archimedean lattice groups.J. London Math. Soc. 12 (1976), 320–322. Zbl 0333.06008, MR 0401579, 10.1112/jlms/s2-12.3.320
Reference: [3] S. Bernau: Orthocompletion of lattice ordered groups.Proc. London Math. Soc. 16 (1966), 107–130. MR 0188113
Reference: [4] P. F. Conrad: Lateral completion of lattice ordered groups.Proc. London Math. Soc. 19 (1969), 444–480. MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [5] P. F. Conrad: The essential closure of an archimedean lattice group.Duke Math. J. 38 (1971), 151–160. MR 0277457
Reference: [6] J. Jakubík: Splitting property of lattice ordered groups.Czechoslovak Math. J. 24 (1974), 257–269. MR 0349523
Reference: [7] J. Jakubík: Strongly projectable lattice ordered groups.Czechoslovak Math. J. 26 (1976), 642–652. MR 0429690
Reference: [8] J. Jakubík: Orthogonal hull of a strongly projectable lattice ordered group.Czechoslovak Math. J. 28 (1978), 484–504. MR 0505957
Reference: [9] J. Jakubík: Maximal Dedekind completion of an abelian lattice ordered group.Czechoslovak Math. J. 28 (1978), 611–631. MR 0506435
Reference: [10] J. Jakubík: Projectable kernel of a lattice ordered group.Universal Algebra and Applications. Banach Center Publ. 9 (1982), 105–112. MR 0738807
Reference: [11] J. Jakubík: Lateral and Dedekind completion of a strongly projectable lattice ordered group.Czechoslovak Math. J. 47 (1997), 511–523. MR 1461430, 10.1023/A:1022419703077
Reference: [12] J. Jakubík and M. Csontóová: Affine completeness of projectable lattice ordered groups.Czechoslovak Math. J. 48 (1998), 359–363. MR 1624264, 10.1023/A:1022849823068
Reference: [13] J. Jakubík: Lateral completion of a projectable lattice ordered group.Czechoslovak Math. J. 50 (2000), 431–444. MR 1761399, 10.1023/A:1022491406886
Reference: [14] A. V. Koldunov and G. Ya. Rotkovich: Archimedean lattice ordered groups with the splitting property.Czechoslovak Math. J. 37 (1987), 7–18. (Russian) MR 0875123
.

Files

Files Size Format View
CzechMathJ_53-2003-4_10.pdf 301.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo