Previous |  Up |  Next

Article

Title: Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves (English)
Author: Ballico, E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 917-924
Summary lang: English
.
Category: math
.
Summary: Let ${\mathcal{M}}_g$ be the moduli space of smooth complex projective curves of genus $g$. Here we prove that the subset of ${\mathcal{M}}_g$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}}_g$. As an application we show that if $X \in {\mathcal{M}}_g$ is defined over ${\mathbb {R}}$, then there exists a low degree pencil $u\: X \rightarrow {\mathbb {P}}^1$ defined over ${\mathbb {R}}$. (English)
Keyword: moduli space of curves
Keyword: gonality
Keyword: real curves
Keyword: Brill-Noether theory
Keyword: real algebraic curves
Keyword: real Riemann surfaces
MSC: 14H10
MSC: 14H51
MSC: 14P99
idZBL: Zbl 1080.14518
idMR: MR2018839
.
Date available: 2009-09-24T11:07:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127849
.
Reference: [1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves, I .Springer-Verlag, 1985. MR 0770932
Reference: [2] S. Chaudary: The Brill-Noether theorem for real algebraic curves. Ph.D. thesis.Duke University, 1995.
Reference: [3] M. Coppens: One-dimensional linear systems of type II on smooth curves. Ph.D. thesis.Utrecht, 1983.
Reference: [4] M. Coppens and G. Martens: Linear series on a general $k$-gonal curve.Abh. Math. Sem. Univ. Hamburg 69 (1999), 347–371. MR 1722944, 10.1007/BF02940885
Reference: [5] S. Diaz: A bound on the dimension of complete subvarieties of ${\mathcal{M}}_g$.Duke Math. J. 51 (1984), 405–408. MR 0747872, 10.1215/S0012-7094-84-05119-6
Reference: [6] C. J. Earle: On moduli of closed Riemann surfaces with symmetries.Advances in the Theory of Riemann Surfaces. Annals of Math. Studies 66, Princeton, N. J., 1971, pp. 119–130. MR 0296282
Reference: [7] B. Gross and J. Harris: Real algebraic curves.Ann. scient. Éc. Norm. Sup., $4^e$ série 14 (1981), 157–182. MR 0631748
Reference: [8] J. Harris and D. Mumford: On the Kodaira dimension of the moduli space of curves.Invent. Math. 67 (1982), 23–86. MR 0664324, 10.1007/BF01393371
Reference: [9] M. Homma: Separable gonality of a Gorenstein curve.Mat. Contemp (to appear). Zbl 0921.14014, MR 1663640
Reference: [10] M. Seppälä: Teichmüller spaces of Klein surfaces.Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes 15 (1978), 1–37.
Reference: [11] M. Seppälä: Real algebraic curves in the moduli spaces of complex curves.Compositio Math. 74 (1990), 259–283. MR 1055696
Reference: [12] C. S. Seshadri: Fibrés vectoriels sur les courbes algébriques. Astérisque 96.Soc. Math. France, 1982. MR 0699278
.

Files

Files Size Format View
CzechMathJ_53-2003-4_11.pdf 322.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo