Previous |  Up |  Next

Article

Title: Achromatic number of $K_5 \times K_n$ for small $n$ (English)
Author: Horňák, Mirko
Author: Pčola, Štefan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 963-988
Summary lang: English
.
Category: math
.
Summary: The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$. (English)
Keyword: complete vertex colouring
Keyword: achromatic number
Keyword: Cartesian product
Keyword: complete graph
MSC: 05C15
idZBL: Zbl 1080.05510
idMR: MR2018843
.
Date available: 2009-09-24T11:08:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127853
.
Reference: [1] A.  Bouchet: Indice achromatique des graphes multiparti complets et réguliers.Cahiers Centre Études Rech. Opér. 20 (1978), 331–340. Zbl 0404.05026, MR 0543176
Reference: [2] N. P.  Chiang and H. L.  Fu: On the achromatic number of the Cartesian product $G_1\times G_2$.Australas. J.  Combin. 6 (1992), 111–117. MR 1196112
Reference: [3] N. P.  Chiang and H. L. Fu: The achromatic indices of the regular complete multipartite graphs.Discrete Math. 141 (1995), 61–66. MR 1336673, 10.1016/0012-365X(93)E0207-K
Reference: [4] K.  Edwards: The harmonious chromatic number and the achromatic number.In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241, R. A. Bailey (ed.), Cambridge University Press, 1997, pp. 13–47. Zbl 0882.05062, MR 1477743
Reference: [5] F.  Harary, S.  Hedetniemi and G.  Prins: An interpolation theorem for graphical homomorphisms.Portug. Math. 26 (1967), 454–462. MR 0272662
Reference: [6] M. Horňák and Š. Pčola: Achromatic number of $K_5\times K_n$ for large  $n$.Discrete Math. 234 (2001), 159–169. MR 1826830, 10.1016/S0012-365X(00)00399-X
Reference: [7] M.  Horňák and J. Puntigán: On the achromatic number of $K_m\times K_n$.In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M.  Fiedler (ed.), Teubner, Leipzig, 1983, pp. 118–123. MR 0737024
Reference: [8] M.  Yannakakis and F.  Gavril: Edge dominating sets in graphs.SIAM J.  Appl. Math. 38 (1980), 364–372. MR 0579424, 10.1137/0138030
.

Files

Files Size Format View
CzechMathJ_53-2003-4_15.pdf 463.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo