Previous |  Up |  Next

Article

Title: Statistical convergence of infinite series (English)
Author: Dindoš, M.
Author: Šalát, T.
Author: Toma, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 989-1000
Summary lang: English
.
Category: math
.
Summary: In this paper we use the notion of statistical convergence of infinite series naturally introduced as the statistical convergence of the sequence of the partial sums of the series. We will discuss some questions related to the convergence of subseries of a given series. (English)
Keyword: statistical convergence
Keyword: set of the first category
Keyword: Hausdorff dimension
Keyword: homogeneous set
MSC: 40A05
idZBL: Zbl 1080.40500
idMR: MR2018844
.
Date available: 2009-09-24T11:08:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127854
.
Reference: [1] R. C. Buck and H. Pollard: Convergence and summability properties of subsequences.Bull. Amer. Math. Soc. 49 (1943), 924–931. MR 0009209, 10.1090/S0002-9904-1943-08061-5
Reference: [2] R. G. Cooke: Infinite Matrices and Sequence Spaces (Russian Edition).Moscow, 1960. MR 0126098
Reference: [3] M. Dindoš, I. Martišovitš and T. Šalát: Remarks on infinite series in linear normed spaces.Tatra Mt. Math. Publ. 19 (2000), 31–46. MR 1771020
Reference: [4] R. Durret: Probability: Theory and Examples.Duxbury Press, 1995. MR 1609153
Reference: [5] H. Fast: Sur la convergence statistique.Coll. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [6] J. A. Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582
Reference: [7] P. Kostyrko, M. Mačaj and T. Šalát: Statistical convergence and I-convergence.To appear in Real Anal. Exch. MR 1844385
Reference: [8] H. H. Ostmann: Additive Zahlentheorie I.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. Zbl 0072.03101, MR 0098721
Reference: [9] T. Šalát: On Hausdorff measure of linear sets.Czechoslovak Math. J. 11 (86) (1980), 24–56. (Russian) MR 0153802
Reference: [10] T. Šalát: On subseries.Math. Zeit. 85 (1964), 209–225. MR 0179507, 10.1007/BF01112142
Reference: [11] T. Šalát: Über die Cantorsche Reihen.Czechoslovak Math. J. 18 (93) (1968), 25–56.
Reference: [12] T. Šalát: On subseries of divergent series.Mat. Čas. SAV 18 (1968), 312–338. MR 0252890
Reference: [13] T. Šalát: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239
Reference: [14] I. J. Schoenberg: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361–375. Zbl 0089.04002, MR 0104946, 10.2307/2308747
Reference: [15] C. Visser: The law of nought-or-one.Studia Math. 7 (1938), 143–159. Zbl 0019.22501, 10.4064/sm-7-1-143-149
Reference: [16] B. C. Tripathy: On statistically convergence series.Punjab University J. Math. XXXXII (1999), 1–8. MR 1778259
Reference: [17] B. C. Tripathy: On statistical convergence.Proc. Estonian Acad. Sci. Phys. Math. 47 (1998), 299–303. Zbl 0961.40002, MR 1671445
Reference: [18] A. Zygmund: Trigonometric series I.MIR, Moscow, 1965. (Russian) MR 0178296
.

Files

Files Size Format View
CzechMathJ_53-2003-4_16.pdf 352.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo