Previous |  Up |  Next

Article

Title: Description of simple exceptional sets in the unit ball (English)
Author: Kot, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 55-63
Summary lang: English
.
Category: math
.
Summary: For $ z\in \partial B^n$, the boundary of the unit ball in $\mathbb{C}^n$, let $\Lambda (z)=\lbrace \lambda \:|\lambda |\le 1\rbrace $. If $ f\in \mathbb{O}(B^n)$ then we call $E(f)=\lbrace z\in \partial B^n\:\int _{\Lambda (z)}|f(z)|^2\mathrm{d}\Lambda (z)=\infty \rbrace $ the exceptional set for $f$. In this note we give a tool for describing such sets. Moreover we prove that if $E$ is a $G_\delta $ and $F_\sigma $ subset of the projective $(n-1)$-dimensional space $\mathbb{P}^{n-1}=\mathbb{P}(\mathbb{C}^n)$ then there exists a holomorphic function $f$ in the unit ball $B^n$ so that $E(f)=E$. (English)
Keyword: boundary behavior of power series
Keyword: exceptional set
MSC: 30B30
MSC: 32A40
idZBL: Zbl 1052.30006
idMR: MR2040218
.
Date available: 2009-09-24T11:09:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127863
.
Reference: [1] J.  Globevink: Holomorphic functions which are highly nonintegrable at the boundary.Israel J. Math (to appear). MR 1749678
Reference: [2] J. Globevnik and E. L. Stout: Highly noncontinuable functions on convex domains.Bull. Sci. Math. 104 (1980), 417–439. MR 0602409
Reference: [3] J. Globevnik and E. L. Stout: Holomorphic functions with highly noncontinuable boundary behavior.J. Anal. Math. 41 (1982), 211–216. MR 0687952
Reference: [4] J.  Siciak: Highly noncontinuable functions on polynomially convex sets.Zeszyty Naukowe Uniwersytetu Jagiellonskiego 25 (1985), 95–107. Zbl 0585.32012, MR 0837828
Reference: [5] W.  Rudin: Function Theory in the Unit Ball of  $ \mathbb{C}^{n} $.Springer, New York, 1980. MR 0601594
Reference: [6] P.  Wojtaszczyk: On highly nonintegrable functions and homogeneous polynomials.Ann. Pol. Math. 65 (1997), 245–251. Zbl 0872.32001, MR 1441179, 10.4064/ap-65-3-245-251
.

Files

Files Size Format View
CzechMathJ_54-2004-1_4.pdf 343.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo