Previous |  Up |  Next

Article

Title: Multilinear operators on $C(K,X)$ spaces (English)
Author: Villanueva, Ignacio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 31-54
Summary lang: English
.
Category: math
.
Summary: Given Banach spaces~ $X$, $Y$ and a compact Hausdorff space~ $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into~ $Y$ to be completely continuous (resp.~ unconditionally converging). We deduce necessary and sufficient conditions for~ $X$ to have the Schur property (resp.~ to contain no copy of~ $c_0$), and for~ $K$ to be scattered. This extends results concerning linear operators. (English)
Keyword: completely continuous
Keyword: unconditionally converging
Keyword: multilinear operators
Keyword: $C(K,X)$ spaces
MSC: 46B25
MSC: 46G10
MSC: 46G25
MSC: 47B07
MSC: 47H60
idZBL: Zbl 1050.46032
idMR: MR2040217
.
Date available: 2009-09-24T11:09:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/133372
.
Reference: [1] R. M.  Aron, C.  Hervés and M.  Valdivia: Weakly continuous mappings on Banach spaces.J.  Funct. Anal. 52 (1983), 189–204. MR 0707203, 10.1016/0022-1236(83)90081-2
Reference: [2] F.  Bombal: Medidas vectoriales y espacios de funciones continuas.Publicaciones del Departamento de Análisis Matemático, Sección  1, No.  3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.
Reference: [3] F.  Bombal and P.  Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions.Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. MR 0764502, 10.1017/S0305004100062678
Reference: [4] F.  Bombal, M.  Fernández and I. Villanueva: Unconditionally converging multilinear operators.Math. Nachr. 226 (2001), 5–15. MR 1839399, 10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I
Reference: [5] F.  Bombal and I.  Villanueva: Multilinear operators in spaces of continuous functions.Funct. Approx. Comment. Math. XXVI (1998), 117–126. MR 1666611
Reference: [6] F. Bombal and I. Villanueva: Polynomial sequential continuity on $C(K,E)$ spaces.J. Math. Anal. Appl. 282 (2003), 341–355. MR 2000348, 10.1016/S0022-247X(03)00161-6
Reference: [7] J.  Brooks and P.  Lewis: Linear operators and vector measures.Trans. Amer. Math. Soc. 192 (1974), 39–162. MR 0338821, 10.1090/S0002-9947-1974-0338821-5
Reference: [8] F.  Cabello, R.  García and I.  Villanueva: Regularity and extension of multilinear forms on Banach spaces.Extracta Mathematicae (2000).
Reference: [9] P.  Cembranos and J.  Mendoza: Banach Spaces of Vector-valued Functions. Lecture Notes in Math. Vol. 1676.Springer, Berlin, 1997. MR 1489231, 10.1007/BFb0096765
Reference: [10] J.  Diestel: Sequences and Series in Banach Spaces.Graduate Texts in Math. Vol.  92, Springer, Berlin, 1984. MR 0737004
Reference: [11] J.  Diestel, H.  Jarchow and A.  Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol.  43.Cambridge Univ. Press, Cambridge, 1995. MR 1342297
Reference: [12] N.  Dinculeanu: Vector Measures.Pergamon Press, 1967. Zbl 0647.60062, MR 0206190
Reference: [13] N.  Dinculeanu and M.  Muthiah: Bimeasures in Banach spaces.Preprint. MR 1849394
Reference: [14] I.  Dobrakov: On representation of linear operators on $ C_0 (T , X )$.Czechoslovak Math.  J. 21(96) (1971), 13–30. MR 0276804
Reference: [15] I.  Dobrakov: On integration in Banach spaces. VIII (polymeasures).Czechoslovak Math.  J. 37(112) (1987), 487–506. Zbl 0688.28002, MR 0904773
Reference: [16] I.  Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$, I.Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. MR 1111763
Reference: [17] M.  Fernández Unzueta: Unconditionally convergent polynomials in Banach spaces and related properties.Extracta Math. 12 (1997), 305–307. MR 1627517
Reference: [18] M.  González and J.  Gutiérrez: Orlicz-Pettis polynomials on Banach spaces.Monats. Math. 129 (2000), 341–350. 10.1007/s006050050080
Reference: [19] J.  Gutiérrez and I.  Villanueva: Aron-Berner extensions and Banach space properties.Preprint.
Reference: [20] B.  Jefferies: Radon polymeasures.Bull. Austral. Math. Soc. 32 (1985), 207–215. Zbl 0577.28002, MR 0815364, 10.1017/S0004972700009904
Reference: [21] B.  Jefferies and W.  Ricker: Integration with respect to vector valued radon polymeasures.J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. MR 1250991, 10.1017/S1446788700034716
Reference: [22] H. E.  Lacey: The Isometric Theory of Classical Banach Spaces.Springer-Verlag, 1974. Zbl 0285.46024, MR 0493279
Reference: [23] P.  Saab: Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions.Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. Zbl 0537.46027, MR 0727084, 10.1017/S030500410006134X
Reference: [24] I.  Villanueva: Representación de operadores multilineales en espacios de funciones continuas.PhD. Thesis, Universidad Complutense de Madrid, 1999.
Reference: [25] I.  Villanueva: Completely continuous multilinear operators on  $C(K)$ spaces.Proc. Amer. Math. Soc. 128 (1984), 793–801. MR 1670435, 10.1090/S0002-9939-99-05396-4
.

Files

Files Size Format View
CzechMathJ_54-2004-1_3.pdf 458.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo