Previous |  Up |  Next

Article

Title: On uniformly locally compact quasi-uniform hyperspaces (English)
Author: Künzi, H. P. A.
Author: Romaguera, S.
Author: Sánchez-Granero, M. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 215-228
Summary lang: English
.
Category: math
.
Summary: We characterize those Tychonoff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family $\mathcal {K}_{0}(X)$ of nonempty compact subsets of $X$. We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space $X$ is uniformly locally compact on $\mathcal {K}_{0}(X)$ if and only if $X$ is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show that a Hausdorff topological space is $\sigma $-compact if and only if its (lower) semicontinuous quasi-uniformity is co-uniformly locally compact. A characterization of those Hausdorff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is co-uniformly locally compact on $\mathcal {K}_{0}(X)$ is obtained. (English)
Keyword: Hausdorff-Bourbaki quasi-uniformity
Keyword: hyperspace
Keyword: locally compact
Keyword: cofinally complete
Keyword: uniformly locally compact
Keyword: co-uniformly locally compact
MSC: 54B20
MSC: 54D45
MSC: 54E15
idZBL: Zbl 1051.54023
idMR: MR2040233
.
Date available: 2009-09-24T11:11:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127878
.
Reference: [1] G.  Beer: Topologies on Closed and Convex Closed Sets. Mathematics and its Applications, Vol.  268.Kluwer Acad. Publ., , 1993. MR 1269778
Reference: [2] G.  Berthiaume: On quasi-uniformities in hyperspaces.Proc. Amer. Math. Soc. 66 (1977), 335–343. Zbl 0345.54026, MR 0482620, 10.1090/S0002-9939-1977-0482620-9
Reference: [3] B. S.  Burdick: Local compactness of hyperspaces.Ann. New York Acad. Sci. 704 (1993), 28–33. Zbl 0828.54021, MR 1277840, 10.1111/j.1749-6632.1993.tb52506.x
Reference: [4] M. M.  Coban: Note sur la topologie exponentielle.Fund. Math. 71 (1971), 27–41. MR 0292014, 10.4064/fm-71-1-27-41
Reference: [5] H. H.  Corson: The determination of paracompactness by uniformities.Amer. J.  Math. 80 (1958), 185–190. Zbl 0080.15803, MR 0094780, 10.2307/2372828
Reference: [6] R.  Engelking: General Topology.Polish Sci. Publ., Warsaw, 1977. Zbl 0373.54002, MR 0500780
Reference: [7] N. R.  Howes: Modern Analysis and Topology. University text.Springer-Verlag, New York, 1995. MR 1351251
Reference: [8] P.  Fletcher and W. F.  Lindgren: $C$-complete quasi-uniform spaces.Arch. Math. (Basel) 30 (1978), 175–180. MR 0474216, 10.1007/BF01226037
Reference: [9] P.  Fletcher and W. F.  Lindgren: Quasi-Uniform Spaces.Marcel Dekker, New York, 1982. MR 0660063
Reference: [10] H. P. A.  Künzi, M. Mršević, I. L.  Reilly and M. K.  Vamanamurthy: Convergence, precompactness and symmetry in quasi-uniform spaces.Math. Japonica 38 (1993), 239–253. MR 1213385
Reference: [11] H. P. A.  Künzi, S.  Romaguera: Left $K$-completeness of the Hausdorff quasi-uniformity.Rostock. Math. Kolloq. 51 (1997), 167–176.
Reference: [12] H. P. A.  Künzi, S.  Romaguera: Well-quasi-ordering and the Hausdorff quasi-uniformity.Topology Appl. 85 (1998), 207–218. MR 1617464, 10.1016/S0166-8641(97)00151-X
Reference: [13] H. P. A.  Künzi and S.  Romaguera: Quasi-metric spaces, quasi-metric hyperspaces and uniform local compactness.Rend. Istit. Mat. Univ. Trieste 30 Suppl. (1999), 133–144. MR 1718967
Reference: [14] H. P. A.  Künzi and C.  Ryser: The Bourbaki quasi-uniformity.Topology Proc. 20 (1995), 161–183. MR 1429179
Reference: [15] E.  Michael: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4
Reference: [16] I. L.  Reilly, P. V.  Subrahmanyam and M. K.  Vamanamurthy: Cauchy sequences in quasi-pseudo-metric spaces.Monatsh. Math. 93 (1982), 127–140. MR 0653103, 10.1007/BF01301400
Reference: [17] M. D.  Rice: A note on uniform paracompactness.Proc. Amer. Math. Soc. 62 (1977), 359–362. Zbl 0353.54011, MR 0436085
Reference: [18] J.  Rodríguez-López and S.  Romaguera: The relationship between the Vietoris topology and the Hausdorff quasi-uniformity.Topology Appl 124 (2002), 451–464. MR 1930656, 10.1016/S0166-8641(01)00252-8
Reference: [19] S.  Romaguera: On hereditary precompactness and completeness in quasi-uniform spaces.Acta Math. Hungar. 73 (1996), 159–178. Zbl 0924.54035, MR 1415928, 10.1007/BF00058951
Reference: [20] S.  Romaguera and M.  Sanchis: Locally compact topological groups and cofinal completeness.J.  London Math. Soc. 62 (2000), 451–460. MR 1783637, 10.1112/S0024610700001289
Reference: [21] M. A.  Sánchez-Granero: Covering axioms, directed GF-spaces and quasi-uniformities.Publ. Math. Debrecen 61 (2002), 357–381. MR 1943699
.

Files

Files Size Format View
CzechMathJ_54-2004-1_19.pdf 386.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo