Previous |  Up |  Next

Article

Title: Graceful signed graphs (English)
Author: Acharya, Mukti
Author: Singh, Tarkeshwar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 291-302
Summary lang: English
.
Category: math
.
Summary: A $(p,q)$-sigraph $S$ is an ordered pair $(G,s)$ where $G = (V,E)$ is a $(p,q)$-graph and $s$ is a function which assigns to each edge of $G$ a positive or a negative sign. Let the sets $E^+$ and $E^-$ consist of $m$ positive and $n$ negative edges of $G$, respectively, where $m + n = q$. Given positive integers $k$ and $d$, $S$ is said to be $(k,d)$-graceful if the vertices of $G$ can be labeled with distinct integers from the set $\lbrace 0,1,\dots , k + (q-1)d\rbrace $ such that when each edge $uv$ of $G$ is assigned the product of its sign and the absolute difference of the integers assigned to $u$ and $v$ the edges in $E^+$ and $E^-$ are labeled $k, k + d, k + 2d,\dots , k + (m - 1)d$ and $-k, -(k + d), -(k + 2d),\dots ,-(k + (n - 1)d)$, respectively. In this paper, we report results of our preliminary investigation on the above new notion, which indeed generalises the well-known concept of $(k,d)$-graceful graphs due to B. D. Acharya and S. M. Hegde. (English)
Keyword: signed graphs
Keyword: $(k,d)$-graceful signed graphs
MSC: 05C22
MSC: 05C78
idZBL: Zbl 1080.05529
idMR: MR2059251
.
Date available: 2009-09-24T11:12:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127888
.
Related article: http://dml.cz/handle/10338.dmlcz/127957
.
Reference: [1] B. D. Acharya: Construction of certain infinite families of graceful graphs from a given graceful graph.Defence Sci. J. 32 (1982), 231–236. Zbl 0516.05055
Reference: [2] B. D. Acharya: On $D$-sequential graphs.J. Math. Phys. Sci. 17 (1983), 21–35. Zbl 0532.05055, MR 0713702
Reference: [3] B. D. Acharya: Are all polyominoes arbitrarily graceful? In: Graph Theory.Singapore 1983, Lecture Notes in Mathematics No. 1073, K. M. Koh, H. P. Yap (eds.), Springer-Verlag, Berlin, 1984, pp. 205–211. MR 0761019
Reference: [4] B. D. Acharya and S. M. Hedge: Arithmetic graphs.J. Graph Theory 14 (1989), 275–299. MR 1060857
Reference: [5] B. D. Acharya and S. M. Hedge: On certain vertex valuations of a graph.Indian J. Pure Appl. Math. 22 (1991), 553–560. MR 1124027
Reference: [6] B. D. Acharya: $(k, d)$-graceful packings of a graph.In: Proc. of Group discussion on graph labelling problems, held in K.R.E.C. Surathkal August 16–25, 1999.
Reference: [7] J. C. Bermond, A. Kotzig and J. Turgeon: On a combinatorial problem of antennas in radio-astronomy.In: Combinatorics. Proc. of the Colloquium of the Mathematical Society, Janos Bolyayi held in Kezthely, Hungary 1976 vol. 18, North-Holland, Amsterdam, 1978, pp. 135–149. MR 0519261
Reference: [8] G. S. Bloom: A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful.In: Topics in Graph Theory, F. Harrary (ed.) vol. 328, Ann. New York Acad. Sci., 1979, pp. 32–51. Zbl 0465.05027, MR 0557885
Reference: [9] G. S. Bloom and D. F. Hsu: On graceful directed graphs (Tech. Rep. Univ. of California).SIAM J. Alg. Discrete Math. 6 (1985), 519–536. MR 0791179, 10.1137/0606051
Reference: [10] I. Cahit: Status of graceful tree conjecture in 1989.In: Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990. Zbl 0714.05050, MR 1100035
Reference: [11] G. J. Chang, D. F. Hsu and D. G. Rogers: Additive variation of graceful theme: Some results on harmonious and other related graphs.Congr. Numer. 32 (1981), 181–197. MR 0681879
Reference: [12] J. A. Gallian: A dynamic survey of graph labeling.Electron. J. Combin. 5 (1998), 1–42. Zbl 0953.05067, MR 1668059
Reference: [13] S. W. Golomb: How to number a graph.In: Graph Theory and Computing, R. C. Read (ed.), Academic Press, New York, 1972, pp. 23–37. Zbl 0293.05150, MR 0340107
Reference: [14] T. Grace: On sequential labelings of graphs.J. Graph Theory 7 (1983), 195–201. Zbl 0522.05063, MR 0698701, 10.1002/jgt.3190070208
Reference: [15] F. Harrary: Graph Theory.Addison-Wesley Publ. Co., Reading, Massachusettes, 1969. MR 0256911
Reference: [16] A. Kotzig: On certain vertex valuations of finite graphs.Utilitas Math. 4 (1973), 261–290. Zbl 0277.05102, MR 0384616
Reference: [17] M. Maheo and H. Thuillier: On $d$-graceful graphs.LRI Rapport de Recherche No 84, 1981. MR 0666937
Reference: [18] A. Rosa: On certain valuations of the vertices of a graph.In: Theory of graphs. Proc. Internat. Symp., Rome 1966, P. Rosentiehl (ed.), Dunod, Paris, 1967, pp. 349–355. Zbl 0193.53204, MR 0223271
Reference: [19] P. J. Slater: On $k$-sequential and other numbered graphs.Discrete Math. 34 (1981), 185–193. Zbl 0461.05053, MR 0611431, 10.1016/0012-365X(81)90066-2
Reference: [20] P. J. Slater: On $k$-graceful graphs.Congr. Numer. 36 (1982), 53–57. Zbl 0519.05057, MR 0726049
Reference: [21] P. J. Slater: On $k$-graceful countable infintie graphs.Res. Rep. National University of Singapore, 1982.
Reference: [22] P. J. Slater: On $k$-graceful locally finite graphs.J. Combin. Theory, Ser. B 35 (1983), 319–322. Zbl 0534.05057, MR 0735199, 10.1016/0095-8956(83)90058-8
.

Files

Files Size Format View
CzechMathJ_54-2004-2_3.pdf 450.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo