Previous |  Up |  Next

Article

Title: The generalized Holditch theorem for the homothetic motions on the planar kinematics (English)
Author: Kuruoğlu, N.
Author: Yüce, S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 337-340
Summary lang: English
.
Category: math
.
Summary: W. Blaschke and H. R. Müller [4, p. 142] have given the following theorem as a generalization of the classic Holditch Theorem: Let $E/E^{\prime }$ be a 1-parameter closed planar Euclidean motion with the rotation number $\nu $ and the period $T$. Under the motion $E/E^{\prime }$, let two points $A = (0, 0)$, $B = (a + b, 0) \in E$ trace the curves $k_A, k_B \subset E^{\prime }$ and let $F_A, F_B$ be their orbit areas, respectively. If $F_X$ is the orbit area of the orbit curve $k$ of the point $X = (a, 0)$ which is collinear with points $A$ and $B$ then \[ F_X = {[aF_B + bF_A] \over a + b} - \pi \nu a b. \] In this paper, under the 1-parameter closed planar homothetic motion with the homothetic scale $ h = h (t)$, the generalization given above by W. Blaschke and H. R. Müller is expressed and \[ F_X = {[aF_B + bF_A]\over a + b} - h^2 (t_0) \pi \nu a b, \] is obtained, where $\exists t_0 \in [0, T]$. (English)
Keyword: Holditch Theorem
Keyword: homothetic motion
Keyword: Steiner formula
MSC: 53A17
idZBL: Zbl 1080.53011
idMR: MR2059254
.
Date available: 2009-09-24T11:12:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127891
.
Reference: [1] A.  Tutar and N.  Kuruoğlu: The Steiner formula and the Holditch theorem for the homothetic motions on the planar kinematics.Mech. Machine Theory 34 (1999), 1–6. MR 1738623, 10.1016/S0094-114X(98)00028-7
Reference: [2] H.  Holditch: Geometrical Theorem.Q. J. Pure Appl. Math. 2 (1858), 38–39.
Reference: [3] M.  Spivak: Calculus on Manifolds.W. A. Benjamin, New York, 1965. Zbl 0141.05403, MR 0209411
Reference: [4] W.  Blaschke and H. R. Müller: Ebene Kinematik.Oldenbourg, München, 1956. MR 0078790
.

Files

Files Size Format View
CzechMathJ_54-2004-2_6.pdf 302.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo